IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/97311.html
   My bibliography  Save this paper

Deep Quarantine for Suspicious Mail

Author

Listed:
  • Benkovich, Nikita
  • Dedenok, Roman
  • Golubev, Dmitry

Abstract

In this paper, we introduce DeepQuarantine (DQ), a cloudtechnology to detect and quarantine potential spam messages. Spam at-tacks are becoming more diverse and can potentially be harmful to emailusers. Despite the high quality and performance of spam filtering sys-tems, detection of a spam campaign can take some time. Unfortunately,in this case some unwanted messages get delivered to users. To solve thisproblem, we created DQ, which detects potential spam and keeps it ina special Quarantine folder for a while. The time gained allows us todouble-check the messages to improve the reliability of the anti-spam so-lution. Due to high precision of the technology, most of the quarantinedmail is spam, which allows clients to use email without delay. Our solutionis based on applying Convolutional Neural Networks on MIME headersto extract deep features from large-scale historical data. We evaluatedthe proposed method on real-world data and showed that DQ enhancesthe quality of spam detection.

Suggested Citation

  • Benkovich, Nikita & Dedenok, Roman & Golubev, Dmitry, 2019. "Deep Quarantine for Suspicious Mail," MPRA Paper 97311, University Library of Munich, Germany, revised 23 Sep 2019.
  • Handle: RePEc:pra:mprapa:97311
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/97311/1/paper6.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    spam filtering; spam detection; machine learning; deeplearning; cloud technology;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • M15 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - IT Management

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:97311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.