A latent class analysis towards stability and changes in breadwinning patterns among coupled households
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Pennoni Fulvia & Nakai Miki, 2019. "A latent class analysis towards stability and changes in breadwinning patterns among coupled households," Dependence Modeling, De Gruyter, vol. 7(1), pages 234-246, January.
References listed on IDEAS
- Isabella Sulis & Mariano Porcu, 2017. "Handling Missing Data in Item Response Theory. Assessing the Accuracy of a Multiple Imputation Procedure Based on Latent Class Analysis," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 327-359, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fulvia Pennoni & Ewa Genge, 2020. "Analysing the course of public trust via hidden Markov models: a focus on the Polish society," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 399-425, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Isabella Sulis & Mariano Porcu & Vincenza Capursi, 2019. "On the Use of Student Evaluation of Teaching: A Longitudinal Analysis Combining Measurement Issues and Implications of the Exercise," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 142(3), pages 1305-1331, April.
- Lukasz Struski & Marek Śmieja & Jacek Tabor, 2020. "Pointed Subspace Approach to Incomplete Data," Journal of Classification, Springer;The Classification Society, vol. 37(1), pages 42-57, April.
- Douglas L. Steinley, 2018. "Editorial," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 1-4, April.
- Sandip Sinharay, 2022. "Reporting Proficiency Levels for Examinees With Incomplete Data," Journal of Educational and Behavioral Statistics, , vol. 47(3), pages 263-296, June.
More about this item
Keywords
Akaike Information Criterion; Expectation-Maximization algorithm; Gender Inequality; Household Income Composition; Latent class model.;All these keywords.
JEL classification:
- C00 - Mathematical and Quantitative Methods - - General - - - General
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials
- Z13 - Other Special Topics - - Cultural Economics - - - Economic Sociology; Economic Anthropology; Language; Social and Economic Stratification
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:89950. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.