IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/79887.html
   My bibliography  Save this paper

Optimal Apartment Cleaning by Harried College Students: A Game-Theoretic Analysis

Author

Listed:
  • Batabyal, Amitrajeet

Abstract

In this note we use a simple game model to analyze the optimal cleanup of an apartment that is shared by n ∈ ℕ college students who are pressed for time. From an individual standpoint, these students dislike cleaning. However, they also prefer a clean apartment to a dirty one. Hence, for any student i, where i=1,...,n, this student’s utility is the total number of hours spent by all the n students cleaning less a number d times the hours spent cleaning by himself. In this setting, we first determine the Nash equilibrium cleanup times when the number d is less than unity. Second, we find the Nash equilibrium cleanup times when d is greater than unity. Finally, for specific values of n and d, we investigate whether the second Nash equilibrium is Pareto efficient.

Suggested Citation

  • Batabyal, Amitrajeet, 2017. "Optimal Apartment Cleaning by Harried College Students: A Game-Theoretic Analysis," MPRA Paper 79887, University Library of Munich, Germany, revised 26 Jun 2017.
  • Handle: RePEc:pra:mprapa:79887
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/79887/1/MPRA_paper_79887.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Apartment; Cleanup; College Student; Nash Equilibrium; Static Game;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D01 - Microeconomics - - General - - - Microeconomic Behavior: Underlying Principles
    • J22 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Time Allocation and Labor Supply

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:79887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.