IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/79632.html
   My bibliography  Save this paper

Approaches and Techniques to Validate Internal Model Results

Author

Listed:
  • Dacorogna, Michel M

Abstract

The development of risk model for managing portfolio of financial institutions and insurance companies require both from the regulatory and management points of view a strong validation of the quality of the results provided by internal risk models. In Solvency II for instance, regulators ask for independent validation reports from companies who apply for the approval of their internal models. Unfortunately, the usual statistical techniques do not work for the validation of risk models as we lack enough data to significantly test the results of the models. We will certainly never have enough data to statistically estimate the significance of the VaR at a probability of 1 over 200 years, which is the risk measure required by Solvency II. Instead, we need to develop various strategies to test the reasonableness of the model. In this paper, we review various ways, management and regulators can gain confidence in the quality of models. It all starts by ensuring a good calibration of the risk models and the dependencies between the various risk drivers. Then applying stress tests to the model and various empirical analysis, in particular the probability integral transform, we build a full and credible framework to validate risk models.

Suggested Citation

  • Dacorogna, Michel M, 2017. "Approaches and Techniques to Validate Internal Model Results," MPRA Paper 79632, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:79632
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/79632/1/MPRA_paper_79631.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mack, Thomas, 1993. "Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates," ASTIN Bulletin, Cambridge University Press, vol. 23(2), pages 213-225, November.
    2. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    3. Bürgi, Roland & Dacorogna, Michel M & Iles, Roger, 2008. "Risk aggregation, dependence structure and diversification benefit," MPRA Paper 10054, University Library of Munich, Germany.
    4. Busse, Marc & Müller, Ulrich & Dacorogna, Michel, 2010. "Robust Estimation of Reserve Risk," ASTIN Bulletin, Cambridge University Press, vol. 40(2), pages 453-489, November.
    5. Ferriero, A., 2016. "Solvency capital estimation, reserving cycle and ultimate risk," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 162-168.
    6. Arbenz, Philipp & Canestraro, Davide, 2012. "Estimating Copulas for Insurance from Scarce Observations, Expert Opinion and Prior Information: A Bayesian Approach," ASTIN Bulletin, Cambridge University Press, vol. 42(1), pages 271-290, May.
    7. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1999. "Multivariate Density Forecast Evaluation And Calibration In Financial Risk Management: High-Frequency Returns On Foreign Exchange," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 661-673, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borgonovo, Emanuele & Clemente, Gian Paolo & Rabitti, Giovanni, 2024. "Why insurance regulators need to require sensitivity settings of internal models for their approval," Finance Research Letters, Elsevier, vol. 60(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Dacorogna & Alessandro Ferriero & David Krief, 2018. "One-Year Change Methodologies for Fixed-Sum Insurance Contracts," Risks, MDPI, vol. 6(3), pages 1-29, July.
    2. Michel Dacorogna, 2023. "How to Gain Confidence in the Results of Internal Risk Models? Approaches and Techniques for Validation," Risks, MDPI, vol. 11(5), pages 1-20, May.
    3. Corradi, Valentina & Swanson, Norman R., 2004. "A test for the distributional comparison of simulated and historical data," Economics Letters, Elsevier, vol. 85(2), pages 185-193, November.
    4. Francisco Peñaranda, 2004. "Are Vector Autoregressions an Accurate Model for Dynamic Asset Allocation?," Working Papers wp2004_0419, CEMFI.
    5. Ahoniemi, Katja & Lanne, Markku, 2009. "Joint modeling of call and put implied volatility," International Journal of Forecasting, Elsevier, vol. 25(2), pages 239-258.
    6. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    7. González-Rivera, Gloria & Yoldas, Emre, 2012. "Autocontour-based evaluation of multivariate predictive densities," International Journal of Forecasting, Elsevier, vol. 28(2), pages 328-342.
    8. Isao Ishida, 2005. "Scanning Multivariate Conditional Densities with Probability Integral Transforms," CIRJE F-Series CIRJE-F-369, CIRJE, Faculty of Economics, University of Tokyo.
    9. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    10. Algieri, Bernardina & Leccadito, Arturo & Tunaru, Diana, 2021. "Risk premia in electricity derivatives markets," Energy Economics, Elsevier, vol. 100(C).
    11. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    12. Refet Gürkaynak & Justin Wolfers, 2005. "Macroeconomic Derivatives: An Initial Analysis of Market-Based Macro Forecasts, Uncertainty, and Risk," NBER Chapters, in: NBER International Seminar on Macroeconomics 2005, pages 11-50, National Bureau of Economic Research, Inc.
    13. Christian Bontemps & Nour Meddahi, 2012. "Testing distributional assumptions: A GMM aproach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 978-1012, September.
    14. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2008. "Partial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails," Tinbergen Institute Discussion Papers 08-050/4, Tinbergen Institute.
    15. Tsyplakov, Alexander, 2013. "Evaluation of Probabilistic Forecasts: Proper Scoring Rules and Moments," MPRA Paper 45186, University Library of Munich, Germany.
    16. Clements, Michael P., 2006. "Internal consistency of survey respondentsíforecasts: Evidence based on the Survey of Professional Forecasters," Economic Research Papers 269742, University of Warwick - Department of Economics.
    17. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    18. Lucio Sarno, 2003. "Nonlinear Exchange Rate Models: A Selective Overview," Rivista di Politica Economica, SIPI Spa, vol. 93(4), pages 3-46, July-Augu.
    19. Polanski, Arnold & Stoja, Evarist, 2012. "Efficient evaluation of multidimensional time-varying density forecasts, with applications to risk management," International Journal of Forecasting, Elsevier, vol. 28(2), pages 343-352.
    20. Segoviano, Miguel & Espinoza, Raphael, 2017. "Consistent measures of systemic risk," LSE Research Online Documents on Economics 118947, London School of Economics and Political Science, LSE Library.

    More about this item

    Keywords

    Risk Models; validation; stress tests; statistical tests; solvency;
    All these keywords.

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
    • C59 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Other
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:79632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.