IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/7741.html
   My bibliography  Save this paper

An Alternative Sense of Asymptotic Efficiency

Author

Listed:
  • Mueller, Ulrich

Abstract

The paper studies the asymptotic efficiency and robustness of hypothesis tests when models of interest are defined in terms of a weak convergence property. The null and local alternatives induce different limiting distributions for a random element, and a test is considered robust if it controls asymptotic size for all data generating processes for which the random element has the null limiting distribution. Under weak regularity conditions, asymptotically robust and efficient tests are then simply given by efficient tests of the limiting problem--that is, with the limiting random element assumed observed--evaluated at sample analogues. These tests typically coincide with suitably robustified versions of optimal tests in canonical parametric versions of the model. This paper thus establishes an alternative and broader sense of asymptotic efficiency for many previously derived tests in econometrics, such as tests for unit roots, parameter stability tests and tests about regression coefficients under weak instruments, and it provides a concrete limit on the potential for more powerful tests in less parametric set-ups.

Suggested Citation

  • Mueller, Ulrich, 2008. "An Alternative Sense of Asymptotic Efficiency," MPRA Paper 7741, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:7741
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/7741/1/MPRA_paper_7741.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Phillips, P.C.B., 1988. "Weak Convergence of Sample Covariance Matrices to Stochastic Integrals Via Martingale Approximations," Econometric Theory, Cambridge University Press, vol. 4(3), pages 528-533, December.
    2. Ulrich K. M¸ller & Graham Elliott, 2003. "Tests for Unit Roots and the Initial Condition," Econometrica, Econometric Society, vol. 71(4), pages 1269-1286, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Jansson & Marcelo J. Moreira, 2006. "Optimal Inference in Regression Models with Nearly Integrated Regressors," Econometrica, Econometric Society, vol. 74(3), pages 681-714, May.
    2. Pentti Saikkonen & Rickard Sandberg, 2016. "Testing for a Unit Root in Noncausal Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
    3. Werker, Bas J.M. & Zhou, B., 2022. "Semiparametric testing with highly persistent predictors," Other publications TiSEM 2974ce9c-97c1-44cd-9331-0, Tilburg University, School of Economics and Management.
    4. Smeekes, Stephan & Taylor, A.M. Robert, 2012. "Bootstrap Union Tests For Unit Roots In The Presence Of Nonstationary Volatility," Econometric Theory, Cambridge University Press, vol. 28(2), pages 422-456, April.
    5. Chowdhury, Rosen & Cook, Steve & Watson, Duncan, 2023. "Reconsidering the relationship between health and income in the UK," Social Science & Medicine, Elsevier, vol. 332(C).
    6. A M Spiru, 2007. "Inflation convergence in the new EU member states," Working Papers 590260, Lancaster University Management School, Economics Department.
    7. Marcet, Albert & Jarociński, Marek, 2010. "Autoregressions in small samples, priors about observables and initial conditions," Working Paper Series 1263, European Central Bank.
    8. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    9. Helle Bunzel & Walter Enders, 2010. "The Taylor Rule and "Opportunistic" Monetary Policy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(5), pages 931-949, August.
    10. Michael Jansson & Morten Ørregaard Nielsen, 2012. "Nearly Efficient Likelihood Ratio Tests of the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 80(5), pages 2321-2332, September.
    11. Pierre Perron & Gabriel Rodríguez, "undated". "Residuals-based Tests for Cointegration with GLS Detrended Data," Boston University - Department of Economics - Working Papers Series wp2015-017, Boston University - Department of Economics, revised 19 Oct 2015.
    12. Fabio Busetti & Silvia Fabiani & Andrew Harvey, 2006. "Convergence of Prices and Rates of Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 863-877, December.
    13. Christoph Hanck, 2012. "Multiple unit root tests under uncertainty over the initial condition: some powerful modifications," Statistical Papers, Springer, vol. 53(3), pages 767-774, August.
    14. Florin G. Maican & Richard J. Sweeney, 2014. "Costs of misspecification in break-model unit-root tests," Applied Economics, Taylor & Francis Journals, vol. 46(1), pages 111-118, January.
    15. Skrobotov Anton, 2018. "On Trend Breaks and Initial Condition in Unit Root Testing," Journal of Time Series Econometrics, De Gruyter, vol. 10(1), pages 1-15, January.
    16. Phillips, Peter C.B., 1995. "Robust Nonstationary Regression," Econometric Theory, Cambridge University Press, vol. 11(5), pages 912-951, October.
    17. Anna Bykhovskaya & Vadim Gorin, 2020. "Cointegration in large VARs," Papers 2006.14179, arXiv.org, revised Dec 2021.
    18. Werker, Bas J.M. & Zhou, Bo, 2022. "Semiparametric testing with highly persistent predictors," Journal of Econometrics, Elsevier, vol. 227(2), pages 347-370.
    19. Bas Werker & Bo Zhou, 2020. "Semiparametric Testing with Highly Persistent Predictors," Papers 2009.08291, arXiv.org.
    20. Claude Lopez & Christian J. Murray & David H. Papell, 2013. "Median-unbiased estimation in DF-GLS regressions and the PPP puzzle," Applied Economics, Taylor & Francis Journals, vol. 45(4), pages 455-464, February.

    More about this item

    Keywords

    hypothesis tests; optimality; robustness; weak convergence;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:7741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.