IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/76076.html
   My bibliography  Save this paper

Data Envelopment Analysis of systems with multiple modes of functioning

Author

Listed:
  • Lozano, Sebastián
  • Villa, Gabriel

Abstract

Many systems can operate in different modes of functioning. Conventional Data Envelopment Analysis (DEA) would ignore that fact and consider instead that the system is a black box, paying attention just to the overall input consumption and output production. In this paper a more fine-grained approach is proposed consisting of explicitly modelling the different modes of functioning as specific processes and using the observed data on the input consumption and output production in each of the modes of functioning to infer the corresponding mode-specific technology. The system technology results from composing these mode-specific technologies according to the corresponding time allocations. The proposed approach allows computing efficient operating points for every mode of functioning, looking for improvements in the overall system performance. Two efficiency assessment DEA models are presented depending on whether the observed time allocation is maintained or the model is free to modify it.

Suggested Citation

  • Lozano, Sebastián & Villa, Gabriel, 2016. "Data Envelopment Analysis of systems with multiple modes of functioning," MPRA Paper 76076, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:76076
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/76076/1/MPRA_paper_76076.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Jie & Zhu, Qingyuan & Ji, Xiang & Chu, Junfei & Liang, Liang, 2016. "Two-stage network processes with shared resources and resources recovered from undesirable outputs," European Journal of Operational Research, Elsevier, vol. 251(1), pages 182-197.
    2. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    3. Wade Cook & Dan Chai & John Doyle & Rodney Green, 1998. "Hierarchies and Groups in DEA," Journal of Productivity Analysis, Springer, vol. 10(2), pages 177-198, October.
    4. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    5. Mirdehghan, S. Morteza & Fukuyama, Hirofumi, 2016. "Pareto–Koopmans efficiency and network DEA," Omega, Elsevier, vol. 61(C), pages 78-88.
    6. Lorenzo Castelli & Raffaele Pesenti & Walter Ukovich, 2010. "A classification of DEA models when the internal structure of the Decision Making Units is considered," Annals of Operations Research, Springer, vol. 173(1), pages 207-235, January.
    7. Timo Kuosmanen, 2005. "Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1077-1082.
    8. Fukuyama, Hirofumi & Weber, William L., 2010. "A slacks-based inefficiency measure for a two-stage system with bad outputs," Omega, Elsevier, vol. 38(5), pages 398-409, October.
    9. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    10. Wade Cook & Moez Hababou & Hans Tuenter, 2000. "Multicomponent Efficiency Measurement and Shared Inputs in Data Envelopment Analysis: An Application to Sales and Service Performance in Bank Branches," Journal of Productivity Analysis, Springer, vol. 14(3), pages 209-224, November.
    11. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    12. Kao, Chiang, 2009. "Efficiency measurement for parallel production systems," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1107-1112, August.
    13. Kazemi Matin, Reza & Kuosmanen, Timo, 2009. "Theory of integer-valued data envelopment analysis under alternative returns to scale axioms," Omega, Elsevier, vol. 37(5), pages 988-995, October.
    14. Chen, Yao & Cook, Wade D. & Li, Ning & Zhu, Joe, 2009. "Additive efficiency decomposition in two-stage DEA," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1170-1176, August.
    15. Chen, Yao & Du, Juan & David Sherman, H. & Zhu, Joe, 2010. "DEA model with shared resources and efficiency decomposition," European Journal of Operational Research, Elsevier, vol. 207(1), pages 339-349, November.
    16. Lozano, Sebastián, 2016. "Slacks-based inefficiency approach for general networks with bad outputs: An application to the banking sector," Omega, Elsevier, vol. 60(C), pages 73-84.
    17. Kuosmanen, Timo & Matin, Reza Kazemi, 2009. "Theory of integer-valued data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 192(2), pages 658-667, January.
    18. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Lozano & G. Villa, 2019. "Data envelopment analysis of systems with multiple modes of functioning," Annals of Operations Research, Springer, vol. 278(1), pages 17-41, July.
    2. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    3. AGRELL, Per & HATAMI-MARBINI, Adel, 2011. "Frontier-based performance analysis models for supply chain management; state of the art and research directions," LIDAM Discussion Papers CORE 2011069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Khoveyni, Mohammad & Fukuyama, Hirofumi & Eslami, Robabeh & Yang, Guo-liang, 2019. "Variations effect of intermediate products on the second stage in two-stage processes," Omega, Elsevier, vol. 85(C), pages 35-48.
    5. Chen, Ya & Li, Yongjun & Liang, Liang & Salo, Ahti & Wu, Huaqing, 2016. "Frontier projection and efficiency decomposition in two-stage processes with slacks-based measures," European Journal of Operational Research, Elsevier, vol. 250(2), pages 543-554.
    6. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    7. Victor John M. Cantor & Kim Leng Poh, 2020. "Efficiency measurement for general network systems: a slacks-based measure model," Journal of Productivity Analysis, Springer, vol. 54(1), pages 43-57, August.
    8. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    9. Kao, Chiang, 2014. "Efficiency decomposition in network data envelopment analysis with slacks-based measures," Omega, Elsevier, vol. 45(C), pages 1-6.
    10. Liu, Wenbin & Zhou, Zhongbao & Ma, Chaoqun & Liu, Debin & Shen, Wanfang, 2015. "Two-stage DEA models with undesirable input-intermediate-outputs," Omega, Elsevier, vol. 56(C), pages 74-87.
    11. Plácido Moreno & Sebastián Lozano, 2014. "A network DEA assessment of team efficiency in the NBA," Annals of Operations Research, Springer, vol. 214(1), pages 99-124, March.
    12. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2020. "A Nerlovian cost inefficiency two-stage DEA model for modeling banks’ production process: Evidence from the Turkish banking system," Omega, Elsevier, vol. 95(C).
    13. Kao, Chiang, 2016. "Efficiency decomposition and aggregation in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 255(3), pages 778-786.
    14. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    15. Suvvari Anandarao & S. Raja Sethu Durai & Phanindra Goyari, 2019. "Efficiency Decomposition in two-stage Data Envelopment Analysis: An application to Life Insurance companies in India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 271-285, June.
    16. Sánchez-González, Carlos & Sarto, José Luis & Vicente, Luis, 2017. "The efficiency of mutual fund companies: Evidence from an innovative network SBM approach," Omega, Elsevier, vol. 71(C), pages 114-128.
    17. Ang, Sheng & Chen, Chien-Ming, 2016. "Pitfalls of decomposition weights in the additive multi-stage DEA model," Omega, Elsevier, vol. 58(C), pages 139-153.
    18. Cook, Wade D. & Liang, Liang & Zhu, Joe, 2010. "Measuring performance of two-stage network structures by DEA: A review and future perspective," Omega, Elsevier, vol. 38(6), pages 423-430, December.
    19. Maryam Nematizadeh & Alireza Amirteimoori & Sohrab Kordrostami, 2019. "Performance analysis of two-stage network processes with feedback flows and undesirable factors," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(3), pages 51-66.
    20. Sanjeet Singh & Prabhat Ranjan, 2018. "Efficiency analysis of non-homogeneous parallel sub-unit systems for the performance measurement of higher education," Annals of Operations Research, Springer, vol. 269(1), pages 641-666, October.

    More about this item

    Keywords

    efficiency assessment; multiple modes of functioning; DEA; mode-specific technology; time allocative efficiency;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:76076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.