IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/7461.html
   My bibliography  Save this paper

Sustainable preferences via nondiscounted, hyperreal intergenerational welfare functions

Author

Listed:
  • Pivato, Marcus

Abstract

We define an intergenerational social welfare function Sigma from |R^|N (the set of all infinite-horizon utility streams) into *|R (the ordered field of hyperreal numbers). The function Sigma is continuous, linear, and increasing, and is well-defined even on unbounded (e.g. exponentially increasing) utility streams. This yields a complete social welfare ordering on |R^|N which is Pareto and treats all generations equally (i.e. does not discount future utility). In particular, it is what Chichilnisky (1996) calls a `sustainable' preference ordering: it is neither a `dictatorship of the present' nor a `dictatorship of the future'. We then show how an agent with no `pure' time preferences may still `informationally discount' the future, due to uncertainty. Last, we model intergenerational choice for an exponentially growing economy and population. In one parameter regime, our model shows `instrumental discounting' due to declining marginal utility of wealth. In another regime, we see a disturbing `Paradox of Eternal Deferral'.

Suggested Citation

  • Pivato, Marcus, 2008. "Sustainable preferences via nondiscounted, hyperreal intergenerational welfare functions," MPRA Paper 7461, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:7461
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/7461/1/MPRA_paper_7461.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brown, Donald J & Lewis, Lucinda M, 1981. "Myopic Economic Agents," Econometrica, Econometric Society, vol. 49(2), pages 359-368, March.
    2. Muthoo,Abhinay, 1999. "Bargaining Theory with Applications," Cambridge Books, Cambridge University Press, number 9780521576475, October.
    3. Fishburn, Peter C., 1970. "Arrow's impossibility theorem: Concise proof and infinite voters," Journal of Economic Theory, Elsevier, vol. 2(1), pages 103-106, March.
    4. Andrew Caplin & John Leahy, 2004. "The Social Discount Rate," Journal of Political Economy, University of Chicago Press, vol. 112(6), pages 1257-1268, December.
    5. Campbell, Donald E., 1990. "Intergenerational social choice without the Pareto principle," Journal of Economic Theory, Elsevier, vol. 50(2), pages 414-423, April.
    6. Lauwers, Luc, 1993. "Infinite Chichilnisky rules," Economics Letters, Elsevier, vol. 42(4), pages 349-352.
    7. Esteban Induráin & José Ramón Uriarte & Juan Carlos Candeal, 1997. "Some issues related to the topological aggregation of preferences: addendum (*)," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 14(2), pages 359-361.
    8. Kirman, Alan P. & Sondermann, Dieter, 1972. "Arrow's theorem, many agents, and invisible dictators," Journal of Economic Theory, Elsevier, vol. 5(2), pages 267-277, October.
    9. Graciela Chichilnisky, 1996. "An axiomatic approach to sustainable development," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 13(2), pages 231-257, April.
    10. Lauwers, Luc, 2000. "Topological social choice," Mathematical Social Sciences, Elsevier, vol. 40(1), pages 1-39, July.
    11. Graciela Chichilnisky & Geoffrey Heal, 1997. "Social choice with infinite populations: construction of a rule and impossibility results," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 14(2), pages 303-318.
    12. Araujo, Aloisio, 1985. "Lack of Pareto Optimal Allocations in Economies with Infinitely Many Commodities: The Need for Impatience," Econometrica, Econometric Society, vol. 53(2), pages 455-461, March.
    13. Lauwers, Luc & Van Liedekerke, Luc, 1995. "Ultraproducts and aggregation," Journal of Mathematical Economics, Elsevier, vol. 24(3), pages 217-237.
    14. Efimov, Boris A. & Koshevoy, Gleb A., 1994. "A topological approach to social choice with infinite populations," Mathematical Social Sciences, Elsevier, vol. 27(2), pages 145-157, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lauwers, Luc, 2000. "Topological social choice," Mathematical Social Sciences, Elsevier, vol. 40(1), pages 1-39, July.
    2. Herzberg, Frederik & Eckert, Daniel, 2012. "The model-theoretic approach to aggregation: Impossibility results for finite and infinite electorates," Mathematical Social Sciences, Elsevier, vol. 64(1), pages 41-47.
    3. Frederik S. Herzberg, 2013. "The (im)possibility of collective risk measurement: Arrovian aggregation of variational preferences," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 1(1), pages 69-92, May.
    4. Jean-Pierre Drugeon & Thai Ha-Huy, 2018. "Towards a Decomposition for the Future: Closeness, Remoteness & Temporal Biases," PSE Working Papers halshs-01962035, HAL.
    5. Walter Bossert & Kotaro Suzumura, 2011. "Multi-profile intergenerational social choice," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 37(3), pages 493-509, September.
    6. Norbert Brunner & H. Reiju Mihara, 1999. "Arrow's theorem, Weglorz' models and the axiom of choice," Public Economics 9902001, University Library of Munich, Germany, revised 01 Jun 2004.
    7. Jean-Pierre Drugeon & Thai Ha Huy, 2022. "A not so myopic axiomatization of discounting," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(1), pages 349-376, February.
    8. Chichilnisky, Graciela & Heal, Geoffrey, 1983. "Necessary and sufficient conditions for a resolution of the social choice paradox," Journal of Economic Theory, Elsevier, vol. 31(1), pages 68-87, October.
    9. Herzberg, Frederik S., 2008. "Judgement aggregation functions and ultraproducts," MPRA Paper 10546, University Library of Munich, Germany, revised 10 Sep 2008.
    10. Susumu Cato, 2018. "Infinite Population and Positive Responsiveness: A Note," Economics Bulletin, AccessEcon, vol. 38(1), pages 196-200.
    11. Urmee Khan & Maxwell B Stinchcombe, 2016. "Planning for the Long Run: Programming with Patient, Pareto Responsive Preferences," Working Papers 201608, University of California at Riverside, Department of Economics.
    12. Walter Bossert & Kotaro Suzumura, 2012. "Multi-Profile Intertemporal Social Choice," Cahiers de recherche 09-2012, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    13. Herzberg, Frederik, 2010. "A representative individual from Arrovian aggregation of parametric individual utilities," Journal of Mathematical Economics, Elsevier, vol. 46(6), pages 1115-1124, November.
    14. Mihara, H. Reiju, 1999. "Arrow's theorem, countably many agents, and more visible invisible dictators1," Journal of Mathematical Economics, Elsevier, vol. 32(3), pages 267-287, November.
    15. Lauwers, Luc & Van Liedekerke, Luc, 1995. "Ultraproducts and aggregation," Journal of Mathematical Economics, Elsevier, vol. 24(3), pages 217-237.
    16. Susumu Cato, 2019. "The possibility of Paretian anonymous decision-making with an infinite population," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(4), pages 587-601, December.
    17. Khan, Urmee & Stinchcombe, Maxwell B., 2018. "Planning for the long run: Programming with patient, Pareto responsive preferences," Journal of Economic Theory, Elsevier, vol. 176(C), pages 444-478.
    18. H. Reiju Mihara, 1997. "Arrow's Theorem, countably many agents, and more visible invisible dictators," Public Economics 9705001, University Library of Munich, Germany, revised 01 Jun 2004.
    19. Chichilnisky, Graciela, 2009. "The topology of fear," Journal of Mathematical Economics, Elsevier, vol. 45(12), pages 807-816, December.
    20. Bossert, Walter & Cato, Susumu, 2020. "Acyclicity, anonymity, and prefilters," Journal of Mathematical Economics, Elsevier, vol. 87(C), pages 134-141.

    More about this item

    Keywords

    intergenerational choice; intertemporal choice; infinite-horizon; nondiscounted; sustainable; hyperreal; nonstandard real numbers; nonstandard analysis;
    All these keywords.

    JEL classification:

    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations
    • D90 - Microeconomics - - Micro-Based Behavioral Economics - - - General
    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:7461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.