IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/6355.html
   My bibliography  Save this paper

The Correlated Gamma-Ratio Distribution in Model Evaluation and Selection

Author

Listed:
  • Panaretos, John
  • Psarakis, Stelios
  • Xekalaki, Evdokia
  • Karlis, Dimitris

Abstract

The paper considers the problem of selecting one of two not necessarily nested competing regression models based on comparative evaluations of their abilities in each of two different issues: The first pertains to viewing the problem as a “best-fitting” model determination problem in the sense that a model is sought which is closest to the observed data, and utilizes some measure of the adequacy of the models to describe existing observations. The second is entirely different from the first in that it takes account of the predictive adequacy of the models. It is shown that certain test statistics can be constructed which within each of the above settings can lead to appropriate model selection procedures based on sequential comparisons of the competing models in their abilities to describe the data or to predict future observations. The null distribution of these statistics, termed as the “Correlated Gamma Ratio Distribution”, is obtained as the distribution of the ratio of two correlated gamma variates. Applications are given as well as some simulation results revealing the behaviour of the model selection procedures developed. Potential extensions of the proposed procedures are described.

Suggested Citation

  • Panaretos, John & Psarakis, Stelios & Xekalaki, Evdokia & Karlis, Dimitris, 2005. "The Correlated Gamma-Ratio Distribution in Model Evaluation and Selection," MPRA Paper 6355, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:6355
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/6355/1/MPRA_paper_6355.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    2. West, Kenneth D. & Cho, Dongchul, 1995. "The predictive ability of several models of exchange rate volatility," Journal of Econometrics, Elsevier, vol. 69(2), pages 367-391, October.
    3. James G. MacKinnon, 1983. "Model Specification Tests Against Non-Nested Alternatives," Working Paper 573, Economics Department, Queen's University.
    4. Greenberg, Edward & Parks, Robert P, 1997. "A Predictive Approach to Model Selection and Multicollinearity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(1), pages 67-75, Jan.-Feb..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panaretos, John & Psarakis, Stelios & Xekalaki, Evdokia, 1998. "On a Distribution Arising in the Context of Comparative Model Performance Evaluation Problems," MPRA Paper 6276, University Library of Munich, Germany.
    2. Xekalaki, Evdokia & Panaretos, John & Psarakis, Stelios, 2003. "A Predictive Model Evaluation and Selection Approach - The Correlated Gamma Ratio Distribution," MPRA Paper 6389, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    2. Veiga, Helena, 2006. "Volatility forecasts: a continuous time model versus discrete time models," DES - Working Papers. Statistics and Econometrics. WS ws062509, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Lopez, Jose A, 2001. "Evaluating the Predictive Accuracy of Volatility Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(2), pages 87-109, March.
    4. David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
    5. Domenico Mignacca & Mauro Gallegati, 1994. "Is US Real GNP Chaotic? On Using the BDS test to Decide Whether an ARMA Model forthe US GNP Genreates I.I.D. Residuals," International Finance 9410002, University Library of Munich, Germany, revised 09 Nov 1994.
    6. Kirstin Hubrich & Kenneth D. West, 2010. "Forecast evaluation of small nested model sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 574-594.
    7. Mark E. Wohar & David E. Rapach, 2007. "Forecasting the recent behavior of US business fixed investment spending: an analysis of competing models This is a significantly revised version of our previous paper, 'Forecasting US Business Fixed ," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 33-51.
    8. West, Kenneth D & McCracken, Michael W, 1998. "Regression-Based Tests of Predictive Ability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 817-840, November.
    9. McCracken,M.W. & West,K.D., 2001. "Inference about predictive ability," Working papers 14, Wisconsin Madison - Social Systems.
    10. Renee van Eyden & Goodness C. Aye & Rangan Gupta, 2012. "Predictive Ability of Competing Models for South Africa’s Fixed Business Non- Residential Investment Spending," Working Papers 201229, University of Pretoria, Department of Economics.
    11. Byun, Sung Je, 2016. "The usefulness of cross-sectional dispersion for forecasting aggregate stock price volatility," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 162-180.
    12. Alfonso Dufour & Robert F Engle, 2000. "The ACD Model: Predictability of the Time Between Concecutive Trades," ICMA Centre Discussion Papers in Finance icma-dp2000-05, Henley Business School, University of Reading.
    13. West, Kenneth D., 2002. "Comments on 'The state of macroeconomic forecasting'," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 495-497, December.
    14. Mariano, Roberto S. & Preve, Daniel, 2012. "Statistical tests for multiple forecast comparison," Journal of Econometrics, Elsevier, vol. 169(1), pages 123-130.
    15. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    16. João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020. "Nowcasting East German GDP growth: a MIDAS approach," Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
    17. Woerner Jeannette H. C., 2003. "Variational sums and power variation: a unifying approach to model selection and estimation in semimartingale models," Statistics & Risk Modeling, De Gruyter, vol. 21(1), pages 47-68, January.
    18. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    19. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    20. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.

    More about this item

    Keywords

    Model selection; Bivariate gamma distribution; F distribution; Non-nested models; Predictive ability;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:6355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.