IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/58570.html
   My bibliography  Save this paper

The Golden Rule of Capital Accumulation and Global Recession. Aggregate Production Function and the Cambridge Capital Controversy

Author

Listed:
  • Yashin, Pete

Abstract

A new macroeconomic model is presented, which makes it possible to take a fresh look both at the long-term equilibrium growth process and at short-term deviations from it. Its key hypothesis is investment-to-profits equality. This hypothesis has classical roots and corresponds to the Ricardian and Marx approach and coincides with Phelps’ Golden Rule of capital accumulation as well as with Uzawa’s classical hypothesis. Under this assumption the long-term output growth rate is determined by the rate of capital accumulation, which in turn is equal to the net profit rate. The profit rate value is the result of a trade-off between workers and proprietors. The relationship between aggregate output and inputs is analytically derived in this paper where the variable values are measured not in physical units, but in the current monetary cost. It has the Cobb-Douglas functional form but is neither neoclassical production function nor technical relationship, which could specify the maximum output obtainable from a given set of inputs. The exponent of capital in the resulting function is equal to the investment rate, whose current value is not constant in time. So the output is no longer an unalterable function of inputs, and its shape can vary. The ‘production function’ shift parameter, which is commonly associated with the level of technology, may be expressed in terms of the wage level. The reasons for the 2007–2008 global recession have been clarified.

Suggested Citation

  • Yashin, Pete, 2014. "The Golden Rule of Capital Accumulation and Global Recession. Aggregate Production Function and the Cambridge Capital Controversy," MPRA Paper 58570, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:58570
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/58570/1/MPRA_paper_58570.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    2. Andrew B. Abel & N. Gregory Mankiw & Lawrence H. Summers & Richard J. Zeckhauser, 1989. "Assessing Dynamic Efficiency: Theory and Evidence," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 56(1), pages 1-19.
    3. T. W. Swan, 1956. "ECONOMIC GROWTH and CAPITAL ACCUMULATION," The Economic Record, The Economic Society of Australia, vol. 32(2), pages 334-361, November.
    4. Constantin Chilarescu & Nicolas Vaneecloo, 2007. "A Stochastic Approach to the Cobb-Douglas Production Function," Economics Bulletin, AccessEcon, vol. 3(9), pages 1-8.
    5. I Fraser, 2002. "The Cobb-Douglas Production Function: An Antipodean Defence?," Economic Issues Journal Articles, Economic Issues, vol. 7(1), pages 39-58, March.
    6. Shaikh, Anwar, 1974. "Laws of Production and Laws of Algebra: The Humbug Production Function," The Review of Economics and Statistics, MIT Press, vol. 56(1), pages 115-120, February.
    7. Paul Gomme & Finn E. Kydland & Peter Rupert, 2001. "Home Production Meets Time to Build," Journal of Political Economy, University of Chicago Press, vol. 109(5), pages 1115-1131, October.
    8. Fisher, Franklin M, 1969. "The Existence of Aggregate Production Functions," Econometrica, Econometric Society, vol. 37(4), pages 553-577, October.
    9. N. Gregory Mankiw & David Romer & David N. Weil, 1992. "A Contribution to the Empirics of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 407-437.
    10. Avi J. Cohen, 2003. "Retrospectives: Whatever Happened to the Cambridge Capital Theory Controversies?," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 199-214, Winter.
    11. Bliss, C. J., 1975. "Capital Theory and the Distribution of Income," Elsevier Monographs, Elsevier, edition 1, number 9780720436044 edited by Bliss, C. J..
    12. Harcourt,G. C., 2022. "Some Cambridge Controversies in the Theory of Capital," Cambridge Books, Cambridge University Press, number 9781009158152, September.
    13. Jesus Felipe & J. S. L. McCombie, 2002. "A Problem with Some Estimations and Interpretations of the Mark-up in Manufacturing Industry," International Review of Applied Economics, Taylor & Francis Journals, vol. 16(2), pages 187-215.
    14. Jesus Felipe & Franklin M. Fisher, 2003. "Aggregation in Production Functions: What Applied Economists should Know," Metroeconomica, Wiley Blackwell, vol. 54(2‐3), pages 208-262, May.
    15. Douglas, Paul H, 1976. "The Cobb-Douglas Production Function Once Again: Its History, Its Testing, and Some New Empirical Values," Journal of Political Economy, University of Chicago Press, vol. 84(5), pages 903-915, October.
    16. Joan Robinson, 1969. "The Economics of Imperfect Competition," Palgrave Macmillan Books, Palgrave Macmillan, edition 0, number 978-1-349-15320-6, October.
    17. Jonathan Temple, 2006. "Aggregate Production Functions and Growth Economics," International Review of Applied Economics, Taylor & Francis Journals, vol. 20(3), pages 301-317.
    18. Jesus Felipe, 2001. "Endogenous Growth, Increasing Returns and Externalities: An Alternative Interpretation of the Evidence," Metroeconomica, Wiley Blackwell, vol. 52(4), pages 391-427, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiří Pour, 2020. "Analýza relativní přeinvestovanosti či podinvestovanosti ekonomik na panelových datech 122 zemí světa [Analysis of Relative Over-investment and Under-investment of Economies on Panel Data for 122 C," Politická ekonomie, Prague University of Economics and Business, vol. 2020(3), pages 290-321.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yashin, Pete, 2016. "Кризис И Рост Неравенства. Оптимальный Путь Экономического Роста [The crisis and increasing inequality. The best equilibrium growth path]," MPRA Paper 73544, University Library of Munich, Germany.
    2. Jesus Felipe & John S.L. McCombie, 2013. "The Aggregate Production Function and the Measurement of Technical Change," Books, Edward Elgar Publishing, number 1975.
    3. Jesus Felipe & Franklin M. Fisher, 2003. "Aggregation in Production Functions: What Applied Economists should Know," Metroeconomica, Wiley Blackwell, vol. 54(2‐3), pages 208-262, May.
    4. Villar Otálora, Juan Camilo, 2021. "Una revisión sobre los métodos convencionales de la contabilidad del crecimiento: La tiranía de la identidad [A review of the conventional methods of growth accounting: The tyranny of identity]," MPRA Paper 106683, University Library of Munich, Germany.
    5. John S.L. McCombie, 2011. "'Cantabrigian Economics' and the aggregate production function," European Journal of Economics and Economic Policies: Intervention, Edward Elgar Publishing, vol. 8(1), pages 165-182.
    6. José Francisco Bellod Redondo, 2011. "La función de producción de Cobb-Douglas y la economía española," Revista de Economia Critica, Asociacion de Economia Critica, vol. 12, pages 9-38.
    7. Jan Mikael Malmaeus, 2016. "Economic Values and Resource Use," Sustainability, MDPI, vol. 8(5), pages 1-20, May.
    8. Bergheim, Stefan, 2007. "Pair-wise cointegration in long-run growth models," Research Notes 24, Deutsche Bank Research.
    9. Jesus Felipe & F. Gerard Adams, 2005. ""A Theory of Production" The Estimation of the Cobb-Douglas Function: A Retrospective View," Eastern Economic Journal, Eastern Economic Association, vol. 31(3), pages 427-445, Summer.
    10. Fix, Blair, 2015. "Putting Power Back Into Growth Theory," Review of Capital as Power, Capital As Power - Toward a New Cosmology of Capitalism, vol. 1(2), pages 1-37.
    11. Jesus Felipe & John S. L. McCombie, 2007. "Is A Theory Of Total Factor Productivity Really Needed?," Metroeconomica, Wiley Blackwell, vol. 58(1), pages 195-229, February.
    12. Michelle Baddeley, 2006. "Convergence or Divergence? The Impacts of Globalisation on Growth and Inequality in Less Developed Countries," International Review of Applied Economics, Taylor & Francis Journals, vol. 20(3), pages 391-410.
    13. Paul E. Brockway & Matthew K. Heun & João Santos & John R. Barrett, 2017. "Energy-Extended CES Aggregate Production: Current Aspects of Their Specification and Econometric Estimation," Energies, MDPI, vol. 10(2), pages 1-23, February.
    14. Javier López-Bernardo & Félix López-Martínez & Engelbert Stockhammer, 2016. "A Post-Keynesian Response to Piketty's ‘Fundamental Contradiction of Capitalism’," Review of Political Economy, Taylor & Francis Journals, vol. 28(2), pages 190-204, April.
    15. Piotr Pietraszewski, 2016. "Microeconomic fundamentals of the aggregate production function with constant returns to scale," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 45.
    16. Fabozzi, Frank J. & Focardi, Sergio & Ponta, Linda & Rivoire, Manon & Mazza, Davide, 2022. "The economic theory of qualitative green growth," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 242-254.
    17. repec:een:camaaa:2004-9 is not listed on IDEAS
    18. Michael Peneder & Karl Aiginger & Gernot Hutschenreiter & Markus Marterbauer, 2001. "Structural Change and Economic Growth," WIFO Studies, WIFO, number 20668.
    19. Luigi L. Pasinetti, 2000. "Critique of the neoclassical theory of growth and distribution," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 53(215), pages 383-431.

    More about this item

    Keywords

    neoclassical theorem; Uzawa classical hypothesis; Cobb-Douglas function; Uzawa theorem; Uzawa capital intensity condition; business cycle; Harrod-Domar model; accounting identity; path-dependent equilibria; aggregation problems;
    All these keywords.

    JEL classification:

    • E10 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - General
    • E11 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Marxian; Sraffian; Kaleckian
    • E20 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:58570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.