IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/54448.html
   My bibliography  Save this paper

Time Series Analysis using Vector Auto Regressive (VAR) Model of Wind Speeds in Bangui Bay and Selected Weather Variables in Laoag City, Philippines

Author

Listed:
  • Orpia, Cherie
  • Mapa, Dennis S.
  • Orpia, Julius

Abstract

Wind energy is the fastest growing renewable energy technology. Wind turbines do not produce any form of pollution and when strategically placed, it naturally blends with the natural landscape. In the long run, the cost of electricity using wind turbines is cheaper than conventional power plants since it doesn’t consume fossil fuel. Wind speed modelling and forecasting are important in the wind energy industry starting from the feasibility stage to actual operation. Forecasting wind speed is vital in the decision-making process related to wind turbine sizes, revenues, maintenance scheduling and actual operational control systems. This paper models and forecasts wind speeds of turbines in the Northwind Bangui Bay wind farm using the Vector Auto Regressive (VAR) model. The explanatory variables used are local wind speed (Laoag), humidity, temperature and pressure generated from the meteorological station in Laoag City. Wind speeds of turbines and other weather factors were found to be stationary using Augmented Dickey-Fuller (ADF) test. The use of VAR model, from daily time series data, reveals that wind speeds of the turbines can be explained by the past wind speed, the wind speed in Laoag, humidity, temperature and pressure. Results of the analysis, using the forecast error variance decomposition, show that wind speed in Laoag, temperature and humidity are important determinants of the wind speeds of the turbines.

Suggested Citation

  • Orpia, Cherie & Mapa, Dennis S. & Orpia, Julius, 2014. "Time Series Analysis using Vector Auto Regressive (VAR) Model of Wind Speeds in Bangui Bay and Selected Weather Variables in Laoag City, Philippines," MPRA Paper 54448, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:54448
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/54448/1/MPRA_paper_54448.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Wind speed; Vector Auto Regressive (VAR) Model; Variance Decomposition;
    All these keywords.

    JEL classification:

    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:54448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.