IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/40198.html
   My bibliography  Save this paper

Future of option pricing: use of log logistic distribution instead of log normal distribution in Black Scholes model

Author

Listed:
  • Raja, Ammar

Abstract

Options are historically being priced using Black Scholes option pricing model and one of the prominent features of it is normal distribution. In this research paper I will calculate European call options using log logistic distribution instead of normal distribution. My argument is that a model with logistic distribution reflects better fit of option prices as compared to normal distribution. In this research paper I have used historic data on stocks, value European call options using both logistic and normal distribution and then finally compare the results in order to check the validity of my argument. What I have found is that European call options prices based on log logistic distribution better reflect stock prices on expiry date and Black Scholes Model based on normal distribution tend to overprice European call options. Another interesting fact is that before 1987 stock market crash, Black Scholes model valued options more correctly on average. But with time as the volatility of stocks increased and with more and more crashes normal distribution tend to underestimate the probability of default and thus generally overpriced options. At this point of time log logistic distribution is better serving the purpose but all depends on volatility of the stocks. If volatility levels further increase then fat tails of log logistic distribution have to become even fatter, that’s why keeping an eye on facts and incorporating all relevant variables in your model is very important. In finance there is never a universal truth every thing depends on what’s happening in the market.

Suggested Citation

  • Raja, Ammar, 2009. "Future of option pricing: use of log logistic distribution instead of log normal distribution in Black Scholes model," MPRA Paper 40198, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:40198
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/40198/1/MPRA_paper_40198.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    2. Simon Benninga, 2008. "Financial Modeling, 3rd Edition," MIT Press Books, The MIT Press, edition 3, volume 1, number 0262026287, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivanova, Vesela & Puigvert Gutiérrez, Josep Maria, 2014. "Interest rate forecasts, state price densities and risk premium from Euribor options," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 210-223.
    2. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    3. Jung‐Soon Shin & Minki Kim & Dongjun Oh & Tong Suk Kim, 2019. "Do hedge funds time market tail risk? Evidence from option‐implied tail risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(2), pages 205-237, February.
    4. Chang, Eric C. & Ren, Jinjuan & Shi, Qi, 2009. "Effects of the volatility smile on exchange settlement practices: The Hong Kong case," Journal of Banking & Finance, Elsevier, vol. 33(1), pages 98-112, January.
    5. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    6. Carole Bernard & Oleg Bondarenko & Steven Vanduffel, 2021. "A model-free approach to multivariate option pricing," Review of Derivatives Research, Springer, vol. 24(2), pages 135-155, July.
    7. Alexander David & Pietro Veronesi, 1998. "Option Prices with Uncertain Fundamentals: Theory and Evidence on the Dynamics of Implied Volatilities," CRSP working papers 485, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
    8. Semih Yon & Cafer Erhan Bozdag, 2014. "Test of Log-Normal Process with Importance Sampling for Options Pricing," Proceedings of Economics and Finance Conferences 0401571, International Institute of Social and Economic Sciences.
    9. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    10. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    11. A. Monteiro & R. Tütüncü & L. Vicente, 2011. "Estimation of risk-neutral density surfaces," Computational Management Science, Springer, vol. 8(4), pages 387-414, November.
    12. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    13. Farka, Mira, 2009. "The effect of monetary policy shocks on stock prices accounting for endogeneity and omitted variable biases," Review of Financial Economics, Elsevier, vol. 18(1), pages 47-55, January.
    14. Jin-Chuan Duan & Weiqi Zhang, 2014. "Forward-Looking Market Risk Premium," Management Science, INFORMS, vol. 60(2), pages 521-538, February.
    15. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    16. Jens Hilscher & Alon Raviv & Ricardo Reis, 2022. "Inflating Away the Public Debt? An Empirical Assessment," The Review of Financial Studies, Society for Financial Studies, vol. 35(3), pages 1553-1595.
    17. Arthur M. Berd & Robert F. Engle & Artem Voronov, 2010. "The Underlying Dynamics of Credit Correlations," Papers 1001.0786, arXiv.org.
    18. Wael Bahsoun & Pawel Góra & Silvia Mayoral & Manuel Morales, 2006. "Random Dynamics and Finance: Constructing Implied Binomial Trees from a Predetermined Stationary Den," Faculty Working Papers 13/06, School of Economics and Business Administration, University of Navarra.
    19. David M. Frankel, 2008. "Adaptive Expectations And Stock Market Crashes," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 49(2), pages 595-619, May.
    20. Lambrinoudakis, Costas & Skiadopoulos, George & Gkionis, Konstantinos, 2019. "Capital structure and financial flexibility: Expectations of future shocks," Journal of Banking & Finance, Elsevier, vol. 104(C), pages 1-18.

    More about this item

    Keywords

    option pricing; black sholes model; logistic distribution; fat tailed distribution; options; derivatives; pricing;
    All these keywords.

    JEL classification:

    • G2 - Financial Economics - - Financial Institutions and Services
    • G3 - Financial Economics - - Corporate Finance and Governance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:40198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.