IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/36177.html
   My bibliography  Save this paper

Target variation in a loss avoiding pension fund problem

Author

Listed:
  • Foster, Jarred

Abstract

This study builds on the findings in Krawczyk (2008), where a 'cautious relaxed' utility measure is introduced in the solving of a dynamic portfolio management problem. The new measure provides distributions that are left skewed in contrast to the right skewed distributions previously found. This paper builds on these findings by testing the effect of increasing the client's target and introducing the manager's preferences. It is found that increasing the target causes the distribution to become less left skewed, causing higher probabilities of loss. The pension fund manager considering his own payoff does not significantly affect the results and in some cases improves them.

Suggested Citation

  • Foster, Jarred, 2011. "Target variation in a loss avoiding pension fund problem," MPRA Paper 36177, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:36177
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/36177/1/MPRA_paper_36177.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alistair Windsor & Jacek B. Krawczyk, 1997. "A Matlab Package for Approximating the Solution to a Continuous- Time Stochastic Optimal Control Problem," Computational Economics 9710002, University Library of Munich, Germany.
    2. Yiu, K. F. C., 2004. "Optimal portfolios under a value-at-risk constraint," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1317-1334, April.
    3. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    4. Azzato, Jeffrey & Krawczyk, Jacek, 2006. "SOCSol4L An improved MATLAB package for approximating the solution to a continuous-time stochastic optimal control problem," MPRA Paper 1179, University Library of Munich, Germany.
    5. Arjan B. Berkelaar & Roy Kouwenberg & Thierry Post, 2004. "Optimal Portfolio Choice under Loss Aversion," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 973-987, November.
    6. Paul A. Samuelson, 2011. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 31, pages 465-472, World Scientific Publishing Co. Pte. Ltd..
    7. Stanley R. Pliska, 1986. "A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 371-382, May.
    8. Samuelson, Paul A, 1974. "Comments on the Favorable-Bet Theorem," Economic Inquiry, Western Economic Association International, vol. 12(3), pages 345-355, September.
    9. Jacek B. Krawczyk, 2008. "On loss-avoiding payoff distribution in a dynamic portfolio management problem," Journal of Risk Finance, Emerald Group Publishing, vol. 9(2), pages 151-172, February.
    10. Azzato, Jeffrey D. & Krawczyk, Jacek B., 2008. "A parallel Matlab package for approximating the solution to a continuous-time stochastic optimal control problem," MPRA Paper 9993, University Library of Munich, Germany.
    11. Cairns, Andrew, 2000. "Some Notes on the Dynamics and Optimal Control of Stochastic Pension Fund Models in Continuous Time," ASTIN Bulletin, Cambridge University Press, vol. 30(1), pages 19-55, May.
    12. Azzato, Jeffrey & Krawczyk, Jacek B & Sissons, Christopher, 2011. "On loss-avoiding lump-sum pension optimization with contingent targets," Working Paper Series 1532, Victoria University of Wellington, School of Economics and Finance.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacek B Krawczyk, 2015. "Delivering Left-Skewed Portfolio Payoff Distributions in the Presence of Transaction Costs," Risks, MDPI, vol. 3(3), pages 1-20, August.
    2. Foster, Jarred & Krawczyk, Jacek B, 2013. "Sensitivity of cautious-relaxed investment policies to target variation," Working Paper Series 2972, Victoria University of Wellington, School of Economics and Finance.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Foster, Jarred & Krawczyk, Jacek B, 2013. "Sensitivity of cautious-relaxed investment policies to target variation," Working Paper Series 2972, Victoria University of Wellington, School of Economics and Finance.
    2. Jacek B Krawczyk, 2015. "Delivering Left-Skewed Portfolio Payoff Distributions in the Presence of Transaction Costs," Risks, MDPI, vol. 3(3), pages 1-20, August.
    3. Foster, Jarred & Krawczyk, Jacek B, 2013. "Sensitivity of cautious-relaxed investment policies to target variation," Working Paper Series 18792, Victoria University of Wellington, School of Economics and Finance.
    4. Servaas van Bilsen & Roger J. A. Laeven & Theo E. Nijman, 2020. "Consumption and Portfolio Choice Under Loss Aversion and Endogenous Updating of the Reference Level," Management Science, INFORMS, vol. 66(9), pages 3927-3955, September.
    5. Azzato, Jeffrey & Krawczyk, Jacek B & Sissons, Christopher, 2011. "On loss-avoiding lump-sum pension optimization with contingent targets," Working Paper Series 1532, Victoria University of Wellington, School of Economics and Finance.
    6. van Bilsen, Servaas & Laeven, Roger J.A., 2020. "Dynamic consumption and portfolio choice under prospect theory," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 224-237.
    7. Azzato, Jeffrey & Krawczyk, Jacek B & Sissons, Christopher, 2011. "On loss-avoiding lump-sum pension optimization with contingent targets," Working Paper Series 18552, Victoria University of Wellington, School of Economics and Finance.
    8. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    9. Gopal Basak & Mrinal Ghosh & Diganta Mukherjee, 2011. "Influence of Big Traders on the Stock Market: Theory and Simulation," Dynamic Games and Applications, Springer, vol. 1(2), pages 220-252, June.
    10. Curatola, Giuliano, 2016. "Optimal consumption and portfolio choice with loss aversion," SAFE Working Paper Series 130, Leibniz Institute for Financial Research SAFE.
    11. Chen, An & Vellekoop, Michel, 2017. "Optimal investment and consumption when allowing terminal debt," European Journal of Operational Research, Elsevier, vol. 258(1), pages 385-397.
    12. Haim Levy & Moshe Levy, 2021. "Prospect theory, constant relative risk aversion, and the investment horizon," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-21, April.
    13. Laurence Carassus & Miklós Rásonyi, 2016. "Maximization of Nonconcave Utility Functions in Discrete-Time Financial Market Models," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 146-173, February.
    14. Bovenberg, A.L. & Koijen, R.S.J. & Nijman, T.E. & Teulings, C.N., 2007. "Saving and investing over the life cycle and the role of collective pension funds," Other publications TiSEM 6eab1341-eda5-4f21-8c06-8, Tilburg University, School of Economics and Management.
    15. Dong, Yinghui & Zheng, Harry, 2019. "Optimal investment of DC pension plan under short-selling constraints and portfolio insurance," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 47-59.
    16. Enrico Giorgi & Thorsten Hens, 2006. "Making prospect theory fit for finance," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(3), pages 339-360, September.
    17. Gao, Jianjun & Xiong, Yan & Li, Duan, 2016. "Dynamic mean-risk portfolio selection with multiple risk measures in continuous-time," European Journal of Operational Research, Elsevier, vol. 249(2), pages 647-656.
    18. Huy N. Chau & Mikl'os R'asonyi, 2016. "Skorohod's representation theorem and optimal strategies for markets with frictions," Papers 1606.07311, arXiv.org, revised Apr 2017.
    19. Yao, Jing & Li, Duan, 2013. "Prospect theory and trading patterns," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2793-2805.
    20. Dong, Yinghui & Zheng, Harry, 2020. "Optimal investment with S-shaped utility and trading and Value at Risk constraints: An application to defined contribution pension plan," European Journal of Operational Research, Elsevier, vol. 281(2), pages 341-356.

    More about this item

    Keywords

    Loss prevention; Numerical analysis; Optimization techniques; Pension funds; Portfolio investment;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:36177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.