IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/3098.html
   My bibliography  Save this paper

Minimization of Keane’s Bump Function by the Repulsive Particle Swarm and the Differential Evolution Methods

Author

Abstract

Keane’s bump function is considered as a standard benchmark for nonlinear constrained optimization. It is highly multi-modal and its optimum is located at the non-linear constrained boundary. The true minimum of this function is, perhaps, unknown. We intend in this paper to optimize Keane’s function of different dimensions (2 to 100) by the Repulsive Particle Swarm and Differential Evolution methods. The DE optimization program has gone a long way to obtain the optimum results. However, the Repulsive Particle Swarm optimization has faltered. We have also conjectured that the values of the decision variables diminish with the increasing index values and they form two distinct clusters with almost equal number of members. These regularities indicate whether the function could attain a minimum or (at least) has reached close to the minimum. We have used this conjecture to incorporate ordering of variable values before evalution of the function and its optimization at every trial. As a result, the performance of DE as well as the RPS has improved significantly. Our results are comparable with the best results available in the literature on optimization of Keane function. Our two findings are notable: (i) Keane’s envisaged min(f) = -0.835 for 50-dimensional problem is realizable; (ii) Liu-Lewis’ min(f) = -0.84421 for 200-dimensional problem is grossly sub-optimal.Computer programs (written by us in Fortran) are available on request.

Suggested Citation

  • Mishra, SK, 2007. "Minimization of Keane’s Bump Function by the Repulsive Particle Swarm and the Differential Evolution Methods," MPRA Paper 3098, University Library of Munich, Germany, revised 05 May 2007.
  • Handle: RePEc:pra:mprapa:3098
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/3098/1/MPRA_paper_3098.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irina O. Volkova, 2013. "Application of data envelopment analysis in management research (case of Russian domestic energy sector)," HSE Working papers WP BRP 14/MAN/2013, National Research University Higher School of Economics.
    2. Sudhanshu K Mishra, 2013. "Global Optimization of Some Difficult Benchmark Functions by Host-Parasite Coevolutionary Algorithm," Economics Bulletin, AccessEcon, vol. 33(1), pages 1-18.

    More about this item

    Keywords

    Nonlinear; constrained; global optimization; repulsive particle swarm; differential evolution; Fortran; computer program; Hybrid; Genetic algorithms;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:3098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.