IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/24981.html
   My bibliography  Save this paper

Selection of weak VARMA models by modified Akaike's information criteria

Author

Listed:
  • Boubacar Mainassara, Yacouba

Abstract

This article considers the problem of order selection of the vector autoregressive moving-average models and of the sub-class of the vector autoregressive models under the assumption that the errors are uncorrelated but not necessarily independent. We propose a modified version of the AIC (Akaike information criterion). This criterion requires the estimation of the matrice involved in the asymptotic variance of the quasi-maximum likelihood estimator of these models. Monte carlo experiments show that the proposed modified criterion estimates the model orders more accurately than the standard AIC and AICc (corrected AIC) in large samples and often in small samples.

Suggested Citation

  • Boubacar Mainassara, Yacouba, 2010. "Selection of weak VARMA models by modified Akaike's information criteria," MPRA Paper 24981, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:24981
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/24981/1/MPRA_paper_24981.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian Francq & Hamdi Raïssi, 2007. "Multivariate Portmanteau Test For Autoregressive Models with Uncorrelated but Nonindependent Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(3), pages 454-470, May.
    2. Boubacar Mainassara, Yacouba, 2009. "Multivariate portmanteau test for structural VARMA models with uncorrelated but non-independent error terms," MPRA Paper 18990, University Library of Munich, Germany.
    3. Boubacar Mainassara, Y. & Francq, C., 2011. "Estimating structural VARMA models with uncorrelated but non-independent error terms," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 496-505, March.
    4. Francq, Christian & Zakoïan, Jean-Michel, 2000. "Estimating Weak Garch Representations," Econometric Theory, Cambridge University Press, vol. 16(5), pages 692-728, October.
    5. Francq, Christian & Roy, Roch & Zakoian, Jean-Michel, 2005. "Diagnostic Checking in ARMA Models With Uncorrelated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 532-544, June.
    6. Francq, Christian & Zakoïan, Jean-Michel, 2007. "HAC estimation and strong linearity testing in weak ARMA models," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 114-144, January.
    7. Bénédicte Vidaillet & V. d'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    8. Clifford M. Hurvich & Chih‐Ling Tsai, 1993. "A Corrected Akaike Information Criterion For Vector Autoregressive Model Selection," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(3), pages 271-279, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boubacar Mainassara, Y. & Francq, C., 2011. "Estimating structural VARMA models with uncorrelated but non-independent error terms," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 496-505, March.
    2. Boubacar Maïnassara, Yacouba & Raïssi, Hamdi, 2015. "Semi-strong linearity testing in linear models with dependent but uncorrelated errors," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 110-115.
    3. Boubacar Mainassara, Yacouba, 2009. "Multivariate portmanteau test for structural VARMA models with uncorrelated but non-independent error terms," MPRA Paper 18990, University Library of Munich, Germany.
    4. Boubacar Mainassara, Y. & Carbon, M. & Francq, C., 2012. "Computing and estimating information matrices of weak ARMA models," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 345-361.
    5. Yacouba Boubacar Maïnassara & Youssef Esstafa & Bruno Saussereau, 2021. "Estimating FARIMA models with uncorrelated but non-independent error terms," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 549-608, October.
    6. Pierre Duchesne & Pierre Lafaye de Micheaux, 2013. "Distributions for residual autocovariances in parsimonious periodic vector autoregressive models with applications," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 496-507, July.
    7. Patilea, V. & Raïssi, H., 2013. "Corrected portmanteau tests for VAR models with time-varying variance," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 190-207.
    8. Brüggemann, Ralf & Jentsch, Carsten & Trenkler, Carsten, 2016. "Inference in VARs with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 191(1), pages 69-85.
    9. Anna Staszewska-Bystrova, 2009. "Bootstrap Confidence Bands for Forecast Paths," Working Papers 024, COMISEF.
    10. Lanne, Markku & Saikkonen, Pentti, 2013. "Noncausal Vector Autoregression," Econometric Theory, Cambridge University Press, vol. 29(3), pages 447-481, June.
    11. Li, Linyuan & Duchesne, Pierre & Liou, Chu Pheuil, 2021. "On diagnostic checking in ARMA models with conditionally heteroscedastic martingale difference using wavelet methods," Econometrics and Statistics, Elsevier, vol. 19(C), pages 169-187.
    12. Christian Francq & Roch Roy & Abdessamad Saidi, 2011. "Asymptotic Properties of Weighted Least Squares Estimation in Weak PARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 699-723, November.
    13. Bin Chen & Jinho Choi & Juan Carlos Escanciano, 2017. "Testing for fundamental vector moving average representations," Quantitative Economics, Econometric Society, vol. 8(1), pages 149-180, March.
    14. Abdoulkarim Ilmi Amir & Yacouba Boubacar Maïnassara, 2020. "Multivariate portmanteau tests for weak multiplicative seasonal VARMA models," Statistical Papers, Springer, vol. 61(6), pages 2529-2560, December.
    15. Òscar Jordà & Massimiliano Marcellino, 2010. "Path forecast evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 635-662.
    16. Roy, Roch & Saidi, Abdessamad, 2008. "Aggregation and systematic sampling of periodic ARMA processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4287-4304, May.
    17. Francq, Christian & Zakoïan, Jean-Michel, 2007. "HAC estimation and strong linearity testing in weak ARMA models," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 114-144, January.
    18. Stefan Bruder, 2014. "Comparing several methods to compute joint prediction regions for path forecasts generated by vector autoregressions," ECON - Working Papers 181, Department of Economics - University of Zurich, revised Dec 2015.
    19. Anna Staszewska‐Bystrova, 2011. "Bootstrap prediction bands for forecast paths from vector autoregressive models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(8), pages 721-735, December.
    20. Boubacar Mainassara, Yacouba, 2010. "Selection of weak VARMA models by Akaïke's information criteria," MPRA Paper 23412, University Library of Munich, Germany.

    More about this item

    Keywords

    AIC; discrepancy; identification; Kullback-Leibler information; model selection; QMLE; order selection; weak VARMA models.;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:24981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.