IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/22841.html
   My bibliography  Save this paper

An exact, unified distributional characterization of statistics used to test linear hypotheses in simple regression models

Author

Listed:
  • Parker, Thomas

Abstract

The Wald, likelihood ratio and Lagrange multiplier test statistics are commonly used to test linear restrictions in regression models. It is shown that for testing these restrictions in the classical regression model, the exact densities of these test statistics are special cases of the generalized beta distribution introduced by McDonald (1984); McDonald and Xu (1995a). This unified derivation provides a method by which one can derive small sample critical values for each test. These results may be indicative of the behavior of such test statistics in more general settings, and are useful in visualizing how each statistic changes with different parameter values in the simple regression model. For example, the results suggest that Wald tests may severely underreject the null hypothesis when the sample size is small or a large number of restrictions are tested.

Suggested Citation

  • Parker, Thomas, 2010. "An exact, unified distributional characterization of statistics used to test linear hypotheses in simple regression models," MPRA Paper 22841, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:22841
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/22841/1/MPRA_paper_22841.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Test of linear restrictions; Generalized beta distribution; Small-sample probability distribution; Regression model;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:22841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.