IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/1742.html
   My bibliography  Save this paper

Repulsive Particle Swarm Method on Some Difficult Test Problems of Global Optimization

Author

Abstract

In this paper we test a particular variant of the (Repulsive) Particle Swarm method on some rather difficult global optimization problems. A number of these problems are collected from the extant literature and a few of them are newly introduced. First, we introduce the Particle Swarm method of global optimization and its variant called the 'Repulsive Particle Swarm' (RPS) method. Then we endow the particles with some stronger local search abilities - much like tunneling - so that each particle can make a search in its neighborhood to optimize itself. Next, we introduce the test problems, the existing as well as the new ones. We also give plots of some of these functions to help appreciation of the optimization problem. Finally, we present the results of the RPS optimization exercise and compare the results with those obtained by using the Genetic algorithm (GA)and/or Simulated annealing (SA) method. We append the (Fortran) computer program that we have developed and used in this exercise. Our findings indicate that neither the RPS nor the GA/SA method can assuredly find the optimum of an arbitrary function. In case of the Needle-eye and the Corana functions both methods perform equally well while in case of Bukin's 6th function both yield the values of decision variables far away from the right ones. In case of zero-sum function, GA performs better than the RPS. In case of the Perm #2 function, both of the methods fail when the dimension grows larger. In several cases, GA falters or fails while RPS succeeds. In case of N#1 through N#5 and the ANNs XOR functions the RPS performs better than the Genetic algorithm. It is needed that we find out some criteria to classify the problems that suit (or does not suit) a particular method. This classification will highlight the comparative advantages of using a particular method for dealing with a particular class of problems.

Suggested Citation

  • Mishra, SK, 2006. "Repulsive Particle Swarm Method on Some Difficult Test Problems of Global Optimization," MPRA Paper 1742, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:1742
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/1742/1/MPRA_paper_1742.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mishra, SK, 2006. "Performance of Differential Evolution and Particle Swarm Methods on Some Relatively Harder Multi-modal Benchmark Functions," MPRA Paper 1743, University Library of Munich, Germany.

    More about this item

    Keywords

    Repulsive Particle Swarm; Global optimization; non-convex functions; Bounded rationality; local optima; Bukin; Corana; Rcos; Freudenstein Roth; Goldenstein Price; ANNs XOR; Perm; Power sum; Zero sum; Needle-eye; Genetic algorithms; variants; Fortran; computer program; benchmark; test;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • C69 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Other
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:1742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.