IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/1452.html
   My bibliography  Save this paper

Options valuation

Author

Listed:
  • ilya, gikhman

Abstract

This paper deals with the option-pricing problem. In the first part of the paper we study in details the discrete setting of the option-pricing problem usually referred to as the binomial scheme. We highlight basic differences between the old and the new approaches. The main qualitative distinction of the new pricing approach from either binomial or Black Scholes’s is that it represents the option price as a stochastic process. This stochastic interpretation can not give straightforward advantage for an investor due to stochastic setting of the pricing problem. The new approach explicitly states that the options price is more risky than represented by binomial scheme or Black Scholes theory. To highlight the difference between stochastic and deterministic option price definitions note that if a deterministic value is interpreted as a perfect or fair price we can comment that the stochastic interpretation provides this number or any other with the probability that real world option value at maturity will be bellow chosen number. This probability is a pricing risk of the option. Thus with an investor’s motivation of the option pricing the stochastic approach gives information about the risk taking. The investor analyzing option price and corresponding risk makes a decision to purchase the option or not. Continuous setting will be considered in the second part of the paper following [1]. A significant conclusion can be drawn from the new approach. It is shown that either binomial or Black-Scholes solutions of the option pricing problem have serious drawbacks. In particular, the binomial scheme establishes the unique price for a stock that takes two values and strike price K, Sd

Suggested Citation

  • ilya, gikhman, 2005. "Options valuation," MPRA Paper 1452, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:1452
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/1452/1/MPRA_paper_1452.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gikhman, Ilya, 2008. "Risky Swaps," MPRA Paper 6933, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:1452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.