Betting models using AI: a review on ANN, SVM, and Markov chain
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- David Frank Percy, 2015. "Strategy selection and outcome prediction in sport using dynamic learning for stochastic processes," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(11), pages 1840-1849, November.
- Srivastav, Bhanu, 2021. "The novel Artificial Neural Network assisted models: A review," MPRA Paper 106499, University Library of Munich, Germany.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Michal Friesl & Liam J. A. Lenten & Jan Libich & Petr Stehlík, 2017. "In search of goals: increasing ice hockey’s attractiveness by a sides swap," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(9), pages 1006-1018, September.
- Manner Hans, 2016. "Modeling and forecasting the outcomes of NBA basketball games," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(1), pages 31-41, March.
- Johnston, Iain G., 2022. "Optimal strategies in the fighting fantasy gaming system: Influencing stochastic dynamics by gambling with limited resource," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1272-1281.
- Michal Friesl & Jan Libich & Petr Stehlík, 2020. "Fixing ice hockey’s low scoring flip side? Just flip the sides," Annals of Operations Research, Springer, vol. 292(1), pages 27-45, September.
- Collingwood, James A.P. & Wright, Michael & Brooks, Roger J., 2023. "Simulating the progression of a professional snooker frame," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1286-1299.
More about this item
Keywords
Artificial Intelligence; ANN; Betting; sports; SVM; Markov chain;All these keywords.
JEL classification:
- C5 - Mathematical and Quantitative Methods - - Econometric Modeling
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
- C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-04-05 (Big Data)
- NEP-CMP-2021-04-05 (Computational Economics)
- NEP-ORE-2021-04-05 (Operations Research)
- NEP-SPO-2021-04-05 (Sports and Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:106821. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.