IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/101957.html
   My bibliography  Save this paper

Divided Information Space: Media Polarization on Twitter during 2019 Indonesian Election

Author

Listed:
  • Maulana, Ardian
  • Situngkir, Hokky

Abstract

Nowadays, the understanding of the impact of social media and online news media on the emergence of extreme polarization in political discourse is one of the most pressing challenges for both science and society. In this study, we investigate the phenomenon of political polarization in the indonesian news media network based on the pattern of news consumption patterns of Twitter users during 2019 Indonesian elections. By modeling news consumption patterns as a bipartite network of news outletsTwitter user, and then projecting to a network of news outlets, we observed the emergence of a number of media communites based on audience similarity. By measuring the political alignments of each news outlet, we shows the politically fragmented Indonesian news media landscape, where each media community becomes an political echo chamber for its audience. Our finding highlight the important role of mainstream media as a bridge of information between political echo chamber in social media environment

Suggested Citation

  • Maulana, Ardian & Situngkir, Hokky, 2020. "Divided Information Space: Media Polarization on Twitter during 2019 Indonesian Election," MPRA Paper 101957, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:101957
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/101957/1/MPRA_paper_101957.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michele Tumminello & Salvatore Miccichè & Fabrizio Lillo & Jyrki Piilo & Rosario N Mantegna, 2011. "Statistically Validated Networks in Bipartite Complex Systems," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Rui-Qi & Li, Ming-Xia & Chen, Wei & Zhou, Wei-Xing & Stanley, H. Eugene, 2019. "Structural properties of statistically validated empirical information networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 747-756.
    2. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org, revised May 2024.
    3. Sgrignoli, Paolo & Metulini, Rodolfo & Schiavo, Stefano & Riccaboni, Massimo, 2015. "The relation between global migration and trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 245-260.
    4. Nicoló Musmeci & Tomaso Aste & T Di Matteo, 2015. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.
    5. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Mercedes Campi & Marco Duenas & Giorgio Fagiolo, 2019. "How do countries specialize in food production? A complex-network analysis of the global agricultural product space," LEM Papers Series 2019/37, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    7. repec:wsi:acsxxx:v:21:y:2018:i:08:n:s0219525918500194 is not listed on IDEAS
    8. Nicol'o Musmeci & Tomaso Aste & Tiziana Di Matteo, 2014. "Risk diversification: a study of persistence with a filtered correlation-network approach," Papers 1410.5621, arXiv.org.
    9. Campi, Mercedes & Dueñas, Marco, 2022. "Clusters and Resilience during the COVID–19 Crisis: Evidence from Colombian Exporting Firms," IDB Publications (Working Papers) 12527, Inter-American Development Bank.
    10. Anshul Verma & Orazio Angelini & Tiziana Di Matteo, 2019. "A new set of cluster driven composite development indicators," Papers 1911.11226, arXiv.org, revised Mar 2020.
    11. Chester Curme & Michele Tumminello & Rosario N. Mantegna & H. Eugene Stanley & Dror Y. Kenett, 2015. "Emergence of statistically validated financial intraday lead-lag relationships," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1375-1386, August.
    12. Nicolo Musmeci & Tomaso Aste & Tiziana Di Matteo, 2014. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," Papers 1406.0496, arXiv.org, revised Jan 2015.
    13. Fessina, Massimiliano & Zaccaria, Andrea & Cimini, Giulio & Squartini, Tiziano, 2024. "Pattern-detection in the global automotive industry: A manufacturer-supplier-product network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    14. Raddant, Matthias & Kenett, Dror Y., 2021. "Interconnectedness in the global financial market," Journal of International Money and Finance, Elsevier, vol. 110(C).
    15. Leonardo Bargigli & Renato Giannetti, 2015. "The Italian Corporate System: SOEs, Private Firms and Institutions in a Network Perspective (1952-1983)," Working Papers - Economics wp2015_01.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    16. Basnarkov, Lasko & Stojkoski, Viktor & Utkovski, Zoran & Kocarev, Ljupco, 2020. "Lead–lag relationships in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    17. Marcus Cordi & Damien Challet & Serge Kassibrakis, 2021. "The market nanostructure origin of asset price time reversal asymmetry," Quantitative Finance, Taylor & Francis Journals, vol. 21(2), pages 295-304, February.
    18. Musciotto, Federico & Marotta, Luca & Miccichè, Salvatore & Piilo, Jyrki & Mantegna, Rosario N., 2016. "Patterns of trading profiles at the Nordic Stock Exchange. A correlation-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 267-278.
    19. Anshul Verma & Riccardo Junior Buonocore & Tiziana di Matteo, 2017. "A cluster driven log-volatility factor model: a deepening on the source of the volatility clustering," Papers 1712.02138, arXiv.org, revised May 2018.
    20. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    21. Federica Bianchi & Francesco Bartolucci & Stefano Peluso & Antonietta Mira, 2020. "Longitudinal networks of dyadic relationships using latent trajectories: evidence from the European interbank market," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 711-739, August.

    More about this item

    Keywords

    network; news media network; echo-chamber; twitter; community detection; news consumption;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C90 - Mathematical and Quantitative Methods - - Design of Experiments - - - General
    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:101957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.