IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/101684.html
   My bibliography  Save this paper

Using full limit order book for price jump prediction

Author

Listed:
  • Mynbaev, Kairat

Abstract

Institutional investors, especially high frequency traders, employ the order information contained in the Limit Order Book (LOB). The main purpose of the paper is to investigate how full information about the LOB can help in predicting the price jump. Normally, a full LOB contains total volumes of orders for hundreds of prices. Using the full information runs into the curse of dimensionality which manifests itself in multicollinearity, insignificant coefficients, inflated estimate variances and high computation time. Due to these problems, order volumes for prices that are distant from ask and bid prices are usually not used in prediction procedures. For this reason we call such information a silent crowd. Here we propose a summary measure of the silent crowd and quantify its influence on trade jump prediction. We use a realistically simulated LOB as a vehicle for experiments and logistic regression as the prediction tool. The full code in Matlab includes 18 blocks.

Suggested Citation

  • Mynbaev, Kairat, 2020. "Using full limit order book for price jump prediction," MPRA Paper 101684, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:101684
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/101684/2/MPRA_paper_101684.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thierry Foucault & Ohad Kadan & Eugene Kandel, 2005. "Limit Order Book as a Market for Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1171-1217.
    2. He Huang & Alec N. Kercheval, 2012. "A generalized birth--death stochastic model for high-frequency order book dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 547-557, August.
    3. Tristan Fletcher & John Shawe-Taylor, 2013. "Multiple Kernel Learning with Fisher Kernels for High Frequency Currency Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 42(2), pages 217-240, August.
    4. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 251-256.
    5. Ioanid Rosu & Juhani Linnainmaa, 2009. "Weather and Time Series Determinants of Liquidity in a Limit Order Market," Working Papers hal-00515903, HAL.
    6. Ban Zheng & Eric Moulines & Frédéric Abergel, 2013. "Price jump prediction in a limit order book," Post-Print hal-00684716, HAL.
    7. Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.
    8. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2019. "Price Discovery without Trading: Evidence from Limit Orders," Journal of Finance, American Finance Association, vol. 74(4), pages 1621-1658, August.
    9. Blazejewski, Adam & Coggins, Richard, 2005. "A local non-parametric model for trade sign inference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 481-495.
    10. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Science & Finance (CFM) working paper archive 0203511, Science & Finance, Capital Fund Management.
    11. Ioanid Rosu, 2009. "A Dynamic Model of the Limit Order Book," Post-Print hal-00515873, HAL.
    12. Alec N. Kercheval & Yuan Zhang, 2015. "Modelling high-frequency limit order book dynamics with support vector machines," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1315-1329, August.
    13. Federico Platania & Pedro Serrano & Mikel Tapia, 2018. "Modelling the shape of the limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 18(9), pages 1575-1597, September.
    14. Ioanid Rosu, 2009. "A Dynamic Model of the Limit Order Book," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4601-4641, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    2. Korolev, V.Yu. & Chertok, A.V. & Korchagin, A.Yu. & Zeifman, A.I., 2015. "Modeling high-frequency order flow imbalance by functional limit theorems for two-sided risk processes," Applied Mathematics and Computation, Elsevier, vol. 253(C), pages 224-241.
    3. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    4. Alexander Lykov & Stepan Muzychka & Kirill Vaninsky, 2016. "Investor'S Sentiment In Multi-Agent Model Of The Continuous Double Auction," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(06), pages 1-29, September.
    5. Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.
    6. Khalil Dayri & Mathieu Rosenbaum, 2012. "Large tick assets: implicit spread and optimal tick size," Papers 1207.6325, arXiv.org, revised Jan 2013.
    7. M. Derksen & B. Kleijn & R. de Vilder, 2019. "Clearing price distributions in call auctions," Papers 1904.07583, arXiv.org, revised Nov 2019.
    8. Hugh L. Christensen & Richard E. Turner & Simon I. Hill & Simon J. Godsill, 2013. "Rebuilding the limit order book: sequential Bayesian inference on hidden states," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1779-1799, November.
    9. Ulrich Horst & Michael Paulsen, 2017. "A Law of Large Numbers for Limit Order Books," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1280-1312, November.
    10. Michael Frömmel & Frederick Van Gysegem, 2012. "Spread Components in the Hungarian Forint-Euro Market," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(3), pages 52-69, May.
    11. Hai-Chuan Xu & Wei Chen & Xiong Xiong & Wei Zhang & Wei-Xing Zhou & H Eugene Stanley, 2016. "Limit-order book resiliency after effective market orders: Spread, depth and intensity," Papers 1602.00731, arXiv.org, revised Feb 2017.
    12. Johannes Bleher & Michael Bleher, 2024. "An Algebraic Framework for the Modeling of Limit Order Books," Papers 2406.04969, arXiv.org.
    13. Ulrich Horst & Michael Paulsen, 2015. "A law of large numbers for limit order books," Papers 1501.00843, arXiv.org.
    14. repec:hum:wpaper:sfb649dp2014-053 is not listed on IDEAS
    15. Zijian Shi & John Cartlidge, 2024. "Neural stochastic agent‐based limit order book simulation with neural point process and diffusion probabilistic model," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    16. Johannes Bleher & Michael Bleher & Thomas Dimpfl, 2020. "From orders to prices: A stochastic description of the limit order book to forecast intraday returns," Papers 2004.11953, arXiv.org, revised May 2021.
    17. Raymond P. H. Fishe & Richard Haynes & Esen Onur, 2022. "Resiliency in the E‐mini futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(1), pages 5-23, January.
    18. Ioane Muni Toke, 2013. "The order book as a queueing system: average depth and influence of the size of limit orders," Papers 1311.5661, arXiv.org.
    19. Brolley, Michael & Malinova, Katya, 2021. "Informed liquidity provision in a limit order market," Journal of Financial Markets, Elsevier, vol. 52(C).
    20. Donald Lien & Pi-Hsia Hung, 2023. "Whose trades contribute more to price discovery? Evidence from the Taiwan stock exchange," Review of Quantitative Finance and Accounting, Springer, vol. 61(1), pages 213-263, July.

    More about this item

    Keywords

    Simulation; trade jump prediction; high frequency trading; logistic regression; limit order book;
    All these keywords.

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:101684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.