IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/10129.html
   My bibliography  Save this paper

Preference programming and inconsistent interval matrices

Author

Listed:
  • Islam, R
  • Biswal, MP
  • Alam, SS

Abstract

The problem of derivation of the weights of altematives from pairwise comparison matrices is long standing. In this paper,Lexicographic Goal Programming (LGP) has been used to find out weights from pairwise inconsistent interval judgment matrices. A number of properties and advantages of LGP as a weight determination technique have been explored. An algorithm for identification and modification of inconsistent bounds is also provided. The proposed technique has been illustrated by means of numerical examples.

Suggested Citation

  • Islam, R & Biswal, MP & Alam, SS, 1995. "Preference programming and inconsistent interval matrices," MPRA Paper 10129, University Library of Munich, Germany, revised 1995.
  • Handle: RePEc:pra:mprapa:10129
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/10129/1/MPRA_paper_10129.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Takeda, E. & Cogger, K. O. & Yu, P. L., 1987. "Estimating criterion weights using eigenvectors: A comparative study," European Journal of Operational Research, Elsevier, vol. 29(3), pages 360-369, June.
    2. Arbel, Ami & Vargas, Luis G., 1993. "Preference simulation and preference programming: robustness issues in priority derivation," European Journal of Operational Research, Elsevier, vol. 69(2), pages 200-209, September.
    3. Saaty, Thomas L. & Vargas, Luis G., 1987. "Uncertainty and rank order in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 32(1), pages 107-117, October.
    4. Kress, Moshe, 1991. "Approximate articulation of preference and priority derivation -- a comment," European Journal of Operational Research, Elsevier, vol. 52(3), pages 382-383, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    2. Wang, Ying-Ming & Elhag, Taha M.S., 2007. "A goal programming method for obtaining interval weights from an interval comparison matrix," European Journal of Operational Research, Elsevier, vol. 177(1), pages 458-471, February.
    3. Haines, Linda M., 1998. "A statistical approach to the analytic hierarchy process with interval judgements. (I). Distributions on feasible regions," European Journal of Operational Research, Elsevier, vol. 110(1), pages 112-125, October.
    4. Hocine, Amine & Kouaissah, Noureddine, 2020. "XOR analytic hierarchy process and its application in the renewable energy sector," Omega, Elsevier, vol. 97(C).
    5. Ahn, Byeong Seok, 2017. "The analytic hierarchy process with interval preference statements," Omega, Elsevier, vol. 67(C), pages 177-185.
    6. Xu, Dong-Ling & Yang, Jian-Bo & Wang, Ying-Ming, 2006. "The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1914-1943, November.
    7. Islam, R. & Biswal, M. P. & Alam, S. S., 1997. "Preference programming and inconsistent interval judgments," European Journal of Operational Research, Elsevier, vol. 97(1), pages 53-62, February.
    8. Podinovski, Vladislav V., 2007. "Interval articulation of superiority and precise elicitation of priorities," European Journal of Operational Research, Elsevier, vol. 180(1), pages 406-417, July.
    9. Finan, J. S. & Hurley, W. J., 1999. "Transitive calibration of the AHP verbal scale," European Journal of Operational Research, Elsevier, vol. 112(2), pages 367-372, January.
    10. Mikhailov, L., 2002. "Fuzzy analytical approach to partnership selection in formation of virtual enterprises," Omega, Elsevier, vol. 30(5), pages 393-401, October.
    11. Conde, Eduardo & de la Paz Rivera Pérez, María, 2010. "A linear optimization problem to derive relative weights using an interval judgement matrix," European Journal of Operational Research, Elsevier, vol. 201(2), pages 537-544, March.
    12. Guo, Min & Yang, Jian-Bo & Chin, Kwai-Sang & Wang, Hongwei, 2007. "Evidential reasoning based preference programming for multiple attribute decision analysis under uncertainty," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1294-1312, November.
    13. Van den Honert, R. C., 1998. "Stochastic group preference modelling in the multiplicative AHP: A model of group consensus," European Journal of Operational Research, Elsevier, vol. 110(1), pages 99-111, October.
    14. Salo, Ahti A. & Hamalainen, Raimo P., 1995. "Preference programming through approximate ratio comparisons," European Journal of Operational Research, Elsevier, vol. 82(3), pages 458-475, May.
    15. Ahn, Byeong Seok & Park, Haechurl, 2014. "Establishing dominance between strategies with interval judgments of state probabilities," Omega, Elsevier, vol. 49(C), pages 53-59.
    16. Sugihara, Kazutomi & Ishii, Hiroaki & Tanaka, Hideo, 2004. "Interval priorities in AHP by interval regression analysis," European Journal of Operational Research, Elsevier, vol. 158(3), pages 745-754, November.
    17. Lipovetsky, Stan & Tishler, Asher, 1999. "Interval estimation of priorities in the AHP," European Journal of Operational Research, Elsevier, vol. 114(1), pages 153-164, April.
    18. Ewa Roszkowska, 2020. "The extention rank ordering criteria weighting methods in fuzzy enviroment," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(2), pages 91-114.
    19. Zeshui Xu & Xiaoqiang Cai, 2014. "Deriving Weights from Interval Multiplicative Preference Relations in Group Decision Making," Group Decision and Negotiation, Springer, vol. 23(4), pages 695-713, July.
    20. Vetschera, Rudolf, 1996. "Multi-criteria agency theory," Discussion Papers, Series I 280, University of Konstanz, Department of Economics.

    More about this item

    Keywords

    Analytic hierarchy process; Interval judgment; Preferente programming;
    All these keywords.

    JEL classification:

    • C0 - Mathematical and Quantitative Methods - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:10129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.