IDEAS home Printed from https://ideas.repec.org/p/pen/papers/19-001.html
   My bibliography  Save this paper

The Wisdom of a Confused Crowd:Model-Based Inference

Author

Listed:
  • George J. Mailath

    (Department of Economics, University of Pennsylvania)

  • Larry Samuelson

    (Department of Economics, Yale University)

Abstract

“Crowds” are often regarded as “wiser” than individuals, and prediction markets are often regarded as effective methods for harnessing this wisdom. If the agents in prediction markets are Bayesians who share a common model and prior belief, then the no-trade theorem implies that we should see no trade in the market. But if the agents in the market are not Bayesians who share a common model and prior belief, then it is no longer obvious that the market outcome aggregates or conveys information. In this paper, we examine a stylized prediction market comprised of Bayesian agents whose inferences are based on different models of the underlying environment. We explore a basic tension—the differences in models that give rise to the possibility of trade generally preclude the possibility of perfect information aggregation.

Suggested Citation

  • George J. Mailath & Larry Samuelson, 2019. "The Wisdom of a Confused Crowd:Model-Based Inference," PIER Working Paper Archive 19-001, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  • Handle: RePEc:pen:papers:19-001
    as

    Download full text from publisher

    File URL: https://economics.sas.upenn.edu/system/files/working-papers/19-001%20PIER%20Paper%20Submission.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George J. Mailath & Larry Samuelson, 2020. "Learning under Diverse World Views: Model-Based Inference," American Economic Review, American Economic Association, vol. 110(5), pages 1464-1501, May.
    2. Jose Luis Montiel Olea & Pietro Ortoleva & Mallesh M Pai & Andrea Prat, 2019. "Competing Models," Papers 1907.03809, arXiv.org, revised Nov 2021.
    3. Carola Binder & Wesley Janson & Randal J. Verbrugge, 2019. "Thinking Outside the Box: Do SPF Respondents Have Anchored Inflation Expectations?," Working Papers 19-15, Federal Reserve Bank of Cleveland.

    More about this item

    Keywords

    Wisdom of the Crowd; Information aggregation; Common prior; NonBayesian updating;
    All these keywords.

    JEL classification:

    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pen:papers:19-001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Administrator (email available below). General contact details of provider: https://edirc.repec.org/data/deupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.