IDEAS home Printed from https://ideas.repec.org/p/pav/wpaper/125.html
   My bibliography  Save this paper

Enhanced Objective Bayesian Testing for the Equality of two Proportions

Author

Listed:
  • Guido Consonni

    (Department of Economics and Quantitative Methods, University of Pavia)

  • Jonathan J. Forster

    (School of Mathematics, University of Southampton)

  • Luca La Rocca

    (Dipartimento di Comunicazione e Economia, University of Modena and Reggio Emilia)

Abstract

We develop a new class of prior distributions for Bayesian comparison of nested models, which we call intrinsic moment priors, by combining the well-established notion of intrinsic prior with the recently introduced idea of non-local priors, and in particular of moment priors. Specifically, we aim at testing the equality of two proportions, based on independent samples, and thus focus on discrete data models. Given two nested models, each equipped with a default prior, we first construct a moment prior under the larger model. In this way, the asymptotic learning behavior of the Bayes factor is strengthened, relative to currently used local priors, when the smaller model holds; remarkably, this effect is already apparent for moderate sample sizes. On the other hand, the asymptotic learning behavior of the Bayes factor when the larger model holds is unchanged. However, without appropriate tuning, a moment prior does not provide enough evidence for the larger model when the sample size is small and the data only moderately support the smaller one. For this reason, we apply to the moment prior an intrinsic prior procedure, which amounts to pulling the moment prior towards the subspace specified by the smaller model; we provide general guidelines for determining the training sample size necessary to implement this step. Thus, by joining the virtues of moment and intrinsic priors, we obtain an enhanced objective Bayesian testing procedure: i) our evidence for small samples is broadly comparable to that given by current objective methods; ii) we achieve a superior learning performance as the sample size increases (when the smaller model holds). We first illustrate our methodology in a running Bernoulli example, where we test a sharp null hypothesis, then we implement our procedure to test the equality of two proportions. A detailed analysis of the properties of our method, including a comparison with standard intrinsic priors, is presented together with an application to a collection of real-world 2 × 2 tables involving a sensitivity analysis and a crossvalidation study.

Suggested Citation

  • Guido Consonni & Jonathan J. Forster & Luca La Rocca, 2010. "Enhanced Objective Bayesian Testing for the Equality of two Proportions," Quaderni di Dipartimento 125, University of Pavia, Department of Economics and Quantitative Methods.
  • Handle: RePEc:pav:wpaper:125
    as

    Download full text from publisher

    File URL: http://dem-web.unipv.it/web/docs/dipeco/quad/ps/RePEc/pav/wpaper/q125.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Altomare & Guido Consonni & Luca La Rocca, 2011. "Objective Bayesian Search of Gaussian DAG Models with Non-local Priors," Quaderni di Dipartimento 140, University of Pavia, Department of Economics and Quantitative Methods.
    2. Guido Consonni & Luca La Rocca, 2010. "Moment Priors for Bayesian Model Choice with Applications to Directed Acyclic Graphs," Quaderni di Dipartimento 115, University of Pavia, Department of Economics and Quantitative Methods.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pav:wpaper:125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Paolo Bonomolo (email available below). General contact details of provider: https://edirc.repec.org/data/dppavit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.