IDEAS home Printed from https://ideas.repec.org/p/oxf/wpaper/1016.html
   My bibliography  Save this paper

Visual Bias

Author

Listed:
  • Giulia Caprini

Abstract

I study the non-verbal language of leading pictures in online news and its influence on readers’ opinions. I develop a visual vocabulary and use a dictionary approach to analyze around 300,000 photos published in US news in 2020. I document that the visual language of US media is politically partisan and significantly polarised. I then demonstrate experimentally that the news’ partisan visual language is not merely distinctive of outlets’ ideological positions, but also promotes them among readers. In a survey experiment, identical articles with images of opposing partisanships induce different opinions, tilted towards the pictures’ ideological poles. Moreover, as readers react more to images aligned with their viewpoint, the news’ visual bias causes issue polarization to increase. Finally, I find that media can effectively slant readers using neutral texts and partisan pictures: this result calls for the inclusion of image scrutiny in news assessments and fact checking, today largely text-based.

Suggested Citation

  • Giulia Caprini, 2023. "Visual Bias," Economics Series Working Papers 1016, University of Oxford, Department of Economics.
  • Handle: RePEc:oxf:wpaper:1016
    as

    Download full text from publisher

    File URL: https://ora.ox.ac.uk/objects/uuid:4c6e968e-3ef1-4c14-9a36-e697ead98b2a
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:1016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anne Pouliquen (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.