IDEAS home Printed from https://ideas.repec.org/p/osk/wpaper/0911.html
   My bibliography  Save this paper

Systematized and Path-independent Measurement of Biased Technical Change

Author

Listed:
  • Tsunehiro Otsuki

    (Osaka School of International Public Policy, Osaka University)

Abstract

The sample-specificity and path-dependence of the data envelopment analysis (DEA) based technical change index as a component of Malmquist indexes prevent us from obtaining overall and systematic information on technical change. This paper develops a pathindependent method to estimate technical change using a systematized set of controlled input- output vectors and visualization of the DEA frontiers. The application to the panel datasets of agricultural production in the Brazil Amazon in 1975-1995 indicates non-Hicks-neutral technical change, with crossings of frontiers in both the 1975-1985 and the 1985-1995 periods. The alternative measure of overall technical change shows that moderate technological progress may have occurred on the whole in 1975-1995. The results also show heterogeneous trends across products. The mean of the sample-specific technical change scores are found to be quite different from the overall technical change measure.

Suggested Citation

  • Tsunehiro Otsuki, 2009. "Systematized and Path-independent Measurement of Biased Technical Change," Discussion Papers in Economics and Business 09-11, Osaka University, Graduate School of Economics.
  • Handle: RePEc:osk:wpaper:0911
    as

    Download full text from publisher

    File URL: http://www2.econ.osaka-u.ac.jp/library/global/dp/0911.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rolf Färe & Emili Grifell‐Tatjé & Shawna Grosskopf & C. A. Knox Lovell, 1997. "Biased Technical Change and the Malmquist Productivity Index," Scandinavian Journal of Economics, Wiley Blackwell, vol. 99(1), pages 119-127, March.
    2. repec:bla:scandj:v:99:y:1997:i:1:p:119-27 is not listed on IDEAS
    3. Fare, Rolf & Shawna Grosskopf & Mary Norris & Zhongyang Zhang, 1994. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries," American Economic Review, American Economic Association, vol. 84(1), pages 66-83, March.
    4. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    5. Chen, Yao & Iqbal Ali, Agha, 2004. "DEA Malmquist productivity measure: New insights with an application to computer industry," European Journal of Operational Research, Elsevier, vol. 159(1), pages 239-249, November.
    6. David R. Lee & Christopher B. Barrett & John G. McPeak, 2006. "Policy, technology, and management strategies for achieving sustainable agricultural intensification," Agricultural Economics, International Association of Agricultural Economists, vol. 34(2), pages 123-127, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsunehiro Otsuki, 2013. "Nonparametric measurement of the overall shift in the technology frontier: an application to multiple-output agricultural production data in the Brazilian Amazon," Empirical Economics, Springer, vol. 44(3), pages 1455-1475, June.
    2. Silva, Haroldo José Torres da & Marques, Pedro Valentim, 2021. "Heterogeneity in the productivity of sugar-energy mills in Brazil," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 24(3), February.
    3. Arcelus, F. J. & Arozena, P., 1999. "Measuring sectoral productivity across time and across countries," European Journal of Operational Research, Elsevier, vol. 119(2), pages 254-266, December.
    4. Nin, Alejandro & Arndt, Channing & Preckel, Paul V., 2003. "Is agricultural productivity in developing countries really shrinking? New evidence using a modified nonparametric approach," Journal of Development Economics, Elsevier, vol. 71(2), pages 395-415, August.
    5. Li, Yi & Sun, Linyan & Feng, Taiwen & Zhu, Chunyan, 2013. "How to reduce energy intensity in China: A regional comparison perspective," Energy Policy, Elsevier, vol. 61(C), pages 513-522.
    6. Apostolos Christopoulos & Ioannis Dokas & Sofia Katsimardou & Eleftherios Spyromitros, 2022. "The Malmquist Productivity measure for UK-listed firms in the aftermath of the global financial crisis," Operational Research, Springer, vol. 22(2), pages 1617-1634, April.
    7. Sedef E. Kara & Mustapha D. Ibrahim & Sahand Daneshvar, 2021. "Dual Efficiency and Productivity Analysis of Renewable Energy Alternatives of OECD Countries," Sustainability, MDPI, vol. 13(13), pages 1-14, July.
    8. Chang, Ching-Cheng & Luh, Yir-Hueih, 1999. "Efficiency change and growth in productivity: the Asian growth experience," Journal of Asian Economics, Elsevier, vol. 10(4), pages 551-570.
    9. Adel Hatami-Marbini & Aliasghar Arabmaldar & John Otu Asu, 2022. "Robust productivity growth and efficiency measurement with undesirable outputs: evidence from the oil industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1213-1254, December.
    10. Vincent M. Otto & Timo Kuosmanen & Ekko C. van Ierland, 2006. "Estimating Feedback Effect in Technical Change: A Frontier Approach," Working Papers 2006.27, Fondazione Eni Enrico Mattei.
    11. Mukherjee, Kankana & Ray, Subhash C. & Miller, Stephen M., 2001. "Productivity growth in large US commercial banks: The initial post-deregulation experience," Journal of Banking & Finance, Elsevier, vol. 25(5), pages 913-939, May.
    12. Tsekouras, Kostas D. & Pantzios, Christos J. & Karagiannis, Giannis, 2004. "Malmquist productivity index estimation with zero-value variables: The case of Greek prefectural training councils," International Journal of Production Economics, Elsevier, vol. 89(1), pages 95-106, May.
    13. Jens J. Krüger, 2020. "Long‐run productivity trends: A global update with a global index," Review of Development Economics, Wiley Blackwell, vol. 24(4), pages 1393-1412, November.
    14. Nin Pratt, Alejandro & Yu, Bingxin, 2008. "An updated look at the recovery of agricultural productivity in Sub-Saharan Africa:," IFPRI discussion papers 787, International Food Policy Research Institute (IFPRI).
    15. Kerekes, Monika, 2007. "Analyzing patterns of economic growth: a production frontier approach," Discussion Papers 2007/15, Free University Berlin, School of Business & Economics.
    16. Abudureheman, Maliyamu & Jiang, Qingzhe & Dong, Xiucheng & Dong, Cong, 2022. "Spatial effects of dynamic comprehensive energy efficiency on CO2 reduction in China," Energy Policy, Elsevier, vol. 166(C).
    17. Miguel SARMIENTOO & Andrés CEPEDA & Hernando MUTIS & Juan F. PÉREZ, 2013. "Nueva Evidencia sobre la Eficiencia de la Banca," Archivos de Economía 10705, Departamento Nacional de Planeación.
    18. Chen, Xiaoqing & Liu, Xinwang & Zhu, Qingyuan, 2022. "Comparative analysis of total factor productivity in China's high-tech industries," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    19. Walter Briec & Laurence Lasselle, 2022. "On some relations between a continuous time Luenberger productivity indicator and the Solow model," Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 484-502, April.
    20. Galdeano-Gomez, Emilio & Cespedes-Lorente, Jose & Rodriguez-Rodriguez, Manuel, 2006. "Productivity and Environmental Performance in Marketing Cooperatives: Incentive Schemes on the Horticultural Sector," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25738, International Association of Agricultural Economists.

    More about this item

    Keywords

    Data envelopment analysis; Path dependence; Agricultural intensification;
    All these keywords.

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osk:wpaper:0911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The Economic Society of Osaka University (email available below). General contact details of provider: https://edirc.repec.org/data/feosujp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.