Author
Abstract
The objective of the present paper is to review the current state of climate change technology transfer. This research proposes a method for analyzing climate change technology transfer using patent analysis and topic modeling. A collection of climate change patent data from patent databases would be used as input to group patents in several relevant topics for climate change mitigation using the topic exploration model in this research. The research questions we want to address are: how have patenting activities changed over time in climate change mitigation related technology (CCMT) patents? And who are the technological leaders? The investigation of these questions can offer the technological landscape in climate change-related technologies at the international level. We propose a hybrid Latent Dirichlet Allocation (LDA) approach for topic modelling and identification of relationships between terms and topics related to CCMT, enabling better visualizations of underlying intellectual property dynamics. Further, a predictive model for CCTT is proposed using techniques such as social network analysis (SNA) and, regression analysis. The competitor analysis is also proposed to identify countries with a similar patent landscape. The projected results are expected to facilitate the transfer process associated with existing and emerging climate change technologies and improve technology cooperation between governments.
Suggested Citation
Kulkarni, Shruti, 2020.
"Using Machine Learning to Analyze Climate Change Technology Transfer (CCTT),"
SocArXiv
zyb3j_v1, Center for Open Science.
Handle:
RePEc:osf:socarx:zyb3j_v1
DOI: 10.31219/osf.io/zyb3j_v1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:zyb3j_v1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.