IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/zj468.html
   My bibliography  Save this paper

Gender, Sex, and the Constraints of Machine Learning Methods

Author

Listed:
  • Lockhart, Jeffrey W

    (University of Chicago)

Abstract

Machine learning interacts with gender and sex in myriad ways, intentionally, unintentionally, and sometimes even against practitioner's concerted efforts. Some of these interactions are born out of the allure of a seemingly simple, unambiguous, binary, variable ideally aligned with the technical needs and sensibilities of ML. Most of the time, gender lurks in ML systems without any explicit invitation, simply because these systems mine data for associations, and gendered associations are ubiquitous. And in a growing body of work, scholars are using ML to actively interrogate gender and sexuality, in turn shaping what they mean and how we think about them. Machine learning brings with it new paradigms of quantitative reasoning which hold the potential to either reinscribe or revolutionize gender in not only technical systems, but scientific knowledge as well. Throughout, the key is for people in and around machine learning to pay close attention to what the technology is actually doing with gender and sex.

Suggested Citation

  • Lockhart, Jeffrey W, 2022. "Gender, Sex, and the Constraints of Machine Learning Methods," SocArXiv zj468, Center for Open Science.
  • Handle: RePEc:osf:socarx:zj468
    DOI: 10.31219/osf.io/zj468
    as

    Download full text from publisher

    File URL: https://osf.io/download/6362ec61a4b1890205ec6372/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/zj468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:zj468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.