Author
Listed:
- Wheeler, Andrew Palmer
(Gainwell Technologies)
- Steenbeek, Wouter
Abstract
Objectives: We illustrate how a machine learning algorithm, Random Forests, can provide accurate long-term predictions of crime at micro places relative to other popular techniques. We also show how recent advances in model summaries can help to open the ‘black box’ of Random Forests, considerably improving their interpretability. Methods: We generate long-term crime forecasts for robberies in Dallas at 200 by 200 feet grid cells that allow spatially varying associations of crime generators and demographic factors across the study area. We then show how using interpretable model summaries facilitate understanding the model’s inner workings. Results: We find that Random Forests greatly outperform Risk Terrain Models and Kernel Density Estimation in terms of forecasting future crimes using different measures of predictive accuracy, but only slightly outperform using prior counts of crime. We find different factors that predict crime are highly non-linear and vary over space. Conclusions: We show how using black-box machine learning models can provide accurate micro placed based crime predictions, but still be interpreted in a manner that fosters understanding of why a place is predicted to be risky. Data and code to replicate the results can be downloaded from https://www.dropbox.com/sh/b3n9a6z5xw14rd6/AAAjqnoMVKjzNQnWP9eu7M1ra?dl=0
Suggested Citation
Wheeler, Andrew Palmer & Steenbeek, Wouter, 2020.
"Mapping the risk terrain for crime using machine learning,"
SocArXiv
xc538_v1, Center for Open Science.
Handle:
RePEc:osf:socarx:xc538_v1
DOI: 10.31219/osf.io/xc538_v1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:xc538_v1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.