IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/8je9g.html
   My bibliography  Save this paper

Vox Populi, Vox AI? Using Language Models to Estimate German Public Opinion

Author

Listed:
  • von der Heyde, Leah

    (LMU Munich)

  • Haensch, Anna-Carolina
  • Wenz, Alexander

    (University of Mannheim)

Abstract

The recent development of large language models (LLMs) has spurred discussions about whether LLM-generated “synthetic samples” could complement or replace traditional surveys, considering their training data potentially reflects attitudes and behaviors prevalent in the population. A number of mostly US-based studies have prompted LLMs to mimic survey respondents, finding that the responses closely match the survey data. However, several contextual factors related to the relationship between the respective target population and LLM training data might affect the generalizability of such findings. In this study, we investigate the extent to which LLMs can estimate public opinion in Germany, using the example of vote choice as outcome of interest. To generate a synthetic sample of eligible voters in Germany, we create personas matching the individual characteristics of the 2017 German Longitudinal Election Study respondents. Prompting GPT-3 with each persona, we ask the LLM to predict each respondents’ vote choice in the 2017 German federal elections and compare these predictions to the survey-based estimates on the aggregate and subgroup levels. We find that GPT-3 does not predict citizens’ vote choice accurately, exhibiting a bias towards the Green and Left parties, and making better predictions for more “typical” voter subgroups. While the language model is able to capture broad-brush tendencies tied to partisanship, it tends to miss out on the multifaceted factors that sway individual voter choices. Furthermore, our results suggest that GPT-3 might not be reliable for estimating nuanced, subgroup-specific political attitudes. By examining the prediction of voting behavior using LLMs in a new context, our study contributes to the growing body of research about the conditions under which LLMs can be leveraged for studying public opinion. The findings point to disparities in opinion representation in LLMs and underscore the limitation of applying them for public opinion estimation without accounting for the biases in their training data.

Suggested Citation

  • von der Heyde, Leah & Haensch, Anna-Carolina & Wenz, Alexander, 2023. "Vox Populi, Vox AI? Using Language Models to Estimate German Public Opinion," SocArXiv 8je9g, Center for Open Science.
  • Handle: RePEc:osf:socarx:8je9g
    DOI: 10.31219/osf.io/8je9g
    as

    Download full text from publisher

    File URL: https://osf.io/download/657c6983513a74088daed1fa/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/8je9g?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:8je9g. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.