IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/86d2k_v1.html
   My bibliography  Save this paper

Effect Decomposition in the Presence of Treatment-induced Confounding: A Regression-with-residuals Approach

Author

Listed:
  • Wodtke, Geoffrey
  • Zhou, Xiang

Abstract

Analyses of causal mediation are often complicated by treatment-induced confounders of the mediator-outcome relationship. In the presence of such confounders, the natural direct and indirect effects of treatment on the outcome, into which the total effect can be additively decomposed, are not identified. An alternative but similar set of effects, known as randomized intervention analogues to the natural direct effect (R-NDE) and the natural indirect effect (R-NIE), can still be identified in this situation, but existing estimators for these effects require a complicated weighting procedure that is difficult to use in practice. In this paper, we introduce a new method for estimating the R-NDE and R-NIE that involves only a minor adaption of the comparatively simple regression methods used to perform effect decomposition in the absence of treatment-induced confounding. It involves fitting linear models for (a) the conditional mean of the mediator given treatment and a set of baseline confounders and (b) the conditional mean of the outcome given the treatment, mediator, baseline confounders, and the treatment-induced confounders after first residualizing them with respect to the observed past. The R-NDE and R-NIE are simple functions of the parameters in these models when they are correctly specified and when there are no unobserved variables that confound the treatment-outcome, treatment-mediator, or mediator-outcome relationships. We illustrate the method by decomposing the effect of education on depression symptoms at midlife into components operating through income versus alternative factors. R and Stata packages are available for implementing the proposed method.

Suggested Citation

  • Wodtke, Geoffrey & Zhou, Xiang, 2019. "Effect Decomposition in the Presence of Treatment-induced Confounding: A Regression-with-residuals Approach," SocArXiv 86d2k_v1, Center for Open Science.
  • Handle: RePEc:osf:socarx:86d2k_v1
    DOI: 10.31219/osf.io/86d2k_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/5cdc5ec82d1b9e0019a524cf/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/86d2k_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:86d2k_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.