IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/wu9q4.html
   My bibliography  Save this paper

Data assimilation in Agent-based models using creation and annihilation operators

Author

Listed:
  • Tang, Daniel

    (University of Leeds)

Abstract

Agent-based models are a powerful tool for studying the behaviour of complex systems that can be described in terms of multiple, interacting ``agents''. However, because of their inherently discrete and often highly non-linear nature, it is very difficult to reason about the relationship between the state of the model, on the one hand, and our observations of the real world on the other. In this paper we consider agents that have a discrete set of states that, at any instant, act with a probability that may depend on the environment or the state of other agents. Given this, we show how the mathematical apparatus of quantum field theory can be used to reason probabilistically about the state and dynamics the model, and describe an algorithm to update our belief in the state of the model in the light of new, real-world observations. Using a simple predator-prey model on a 2-dimensional spatial grid as an example, we demonstrate the assimilation of incomplete, noisy observations and show that this leads to an increase in the mutual information between the actual state of the observed system and the posterior distribution given the observations, when compared to a null model.

Suggested Citation

  • Tang, Daniel, 2019. "Data assimilation in Agent-based models using creation and annihilation operators," OSF Preprints wu9q4, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:wu9q4
    DOI: 10.31219/osf.io/wu9q4
    as

    Download full text from publisher

    File URL: https://osf.io/download/5daca68bf1b0a9000a6539d5/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/wu9q4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:wu9q4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.