IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/wjnz3_v1.html
   My bibliography  Save this paper

Extreme bound analysis based on correlation coefficient for optimal regression model

Author

Listed:
  • Nguyen, Loc PhD, PostDoc
  • Amer, Ali A.

Abstract

Regression analysis is an important tool in statistical analysis, in which there is a demand of discovering essential independent variables among many other ones, especially in case that there is a huge number of random variables. Extreme bound analysis is a powerful approach to extract such important variables called robust regressors. In this research, a so-called Regressive Expectation Maximization with RObust regressors (REMRO) algorithm is proposed as an alternative method beside other probabilistic methods for analyzing robust variables. By the different ideology from other probabilistic methods, REMRO searches for robust regressors forming optimal regression model and sorts them according to descending ordering given their fitness values determined by two proposed concepts of local correlation and global correlation. Local correlation represents sufficient explanatories to possible regressive models and global correlation reflects independence level and stand-alone capacity of regressors. Moreover, REMRO can resist incomplete data because it applies Regressive Expectation Maximization (REM) algorithm into filling missing values by estimated values based on ideology of expectation maximization (EM) algorithm. From experimental results, REMRO is more accurate for modeling numeric regressors than traditional probabilistic methods like Sala-I-Martin method but REMRO cannot be applied in case of nonnumeric regression model yet in this research.

Suggested Citation

  • Nguyen, Loc PhD, PostDoc & Amer, Ali A., 2022. "Extreme bound analysis based on correlation coefficient for optimal regression model," OSF Preprints wjnz3_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:wjnz3_v1
    DOI: 10.31219/osf.io/wjnz3_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/6376f243610dd5071df5d32e/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/wjnz3_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:wjnz3_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.