Author
Listed:
- Ferdinands, Gerbrich
- Schram, Raoul
- de Bruin, Jonathan
- Bagheri, Ayoub
- Oberski, Daniel Leonard
(Tilburg University)
- Tummers, Lars
(Utrecht University)
- van de Schoot, Rens
Abstract
Background Conducting a systematic review requires great screening effort. Various tools have been proposed to speed up the process of screening thousands of titles and abstracts by engaging in active learning. In such tools, the reviewer interacts with machine learning software to identify relevant publications as early as possible. To gain a comprehensive understanding of active learning models for reducing workload in systematic reviews, the current study provides a methodical overview of such models. Active learning models were evaluated across four different classification techniques (naive Bayes, logistic regression, support vector machines, and random forest) and two different feature extraction strategies (TF-IDF and doc2vec). Moreover, models were evaluated across six systematic review datasets from various research areas to assess generalizability of active learning models across different research contexts. Methods Performance of the models were assessed by conducting simulations on six systematic review datasets. We defined desirable model performance as maximizing recall while minimizing the number of publications needed to screen. Model performance was evaluated by recall curves, WSS@95, RRF@10, and ATD. Results Within all datasets, the model performance exceeded screening at random order to a great degree. The models reduced the number of publications needed to screen by 91.7% to 63.9%. Conclusions Active learning models for screening prioritization show great potential in reducing the workload in systematic reviews. Overall, the Naive Bayes + TF-IDF model performed the best.
Suggested Citation
Ferdinands, Gerbrich & Schram, Raoul & de Bruin, Jonathan & Bagheri, Ayoub & Oberski, Daniel Leonard & Tummers, Lars & van de Schoot, Rens, 2020.
"Active learning for screening prioritization in systematic reviews - A simulation study,"
OSF Preprints
w6qbg_v1, Center for Open Science.
Handle:
RePEc:osf:osfxxx:w6qbg_v1
DOI: 10.31219/osf.io/w6qbg_v1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:w6qbg_v1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.