IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/srg2t.html
   My bibliography  Save this paper

Hierarchical Bayesian Approach to Fitting Discretized Partial Differential Equation Models to Spatial-temporal Data: The Effects of Numerical Instability on Parameter Estimates

Author

Listed:
  • GEMOETS, DARREN Ethan

Abstract

Hierarchical Bayesian (HB) models provide a flexible framework for modeling spatiotemporal data and processes. In cases where the latent dynamics can be modeled with partial differential equations (PDEs), one approach is to parameterize a dynamic linear model by a discretized PDE model, often using forward differencing. The forward Euler discretization is computationally appealing (i.e., there are no matrix inversions to compute) but it can suffer from numerical instability causing the numerical solution to diverge from the true solution. While such a model might still be useful for prediction, this divergence can affect the posterior parameter estimates. In this paper we use a synthetic dataset to demonstrate how numerical instability in forward Euler-based PDE HB models can bias posterior parameter estimates, and how using other finite difference schemes allow unbiased estimates of HB model parameters.

Suggested Citation

  • GEMOETS, DARREN Ethan, 2022. "Hierarchical Bayesian Approach to Fitting Discretized Partial Differential Equation Models to Spatial-temporal Data: The Effects of Numerical Instability on Parameter Estimates," OSF Preprints srg2t, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:srg2t
    DOI: 10.31219/osf.io/srg2t
    as

    Download full text from publisher

    File URL: https://osf.io/download/624a46ae746f5903264a65be/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/srg2t?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gabriel Huerta & Bruno Sansó & Jonathan R. Stroud, 2004. "A spatiotemporal model for Mexico City ozone levels," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(2), pages 231-248, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcelo Cunha & Dani Gamerman & Montserrat Fuentes & Marina Paez, 2017. "A non-stationary spatial model for temperature interpolation applied to the state of Rio de Janeiro," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 919-939, November.
    2. Stefano F. Tonellato, 2005. "Identifiability Conditions for Spatio-Temporal Bayesian Dynamic Linear Models," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 81-101.
    3. Rivera, Roberto, 2016. "A dynamic linear model to forecast hotel registrations in Puerto Rico using Google Trends data," Tourism Management, Elsevier, vol. 57(C), pages 12-20.
    4. Jonas Wallin & David Bolin, 2015. "Geostatistical Modelling Using Non-Gaussian Matérn Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 872-890, September.
    5. Meraz, M. & Alvarez-Ramirez, J. & Echeverria, J.C., 2017. "Asymmetric correlations in the ozone concentration dynamics of the Mexico City Metropolitan Area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 377-386.
    6. Kyu Jong Lee & Hyungu Kahng & Seoung Bum Kim & Sun Kyoung Park, 2018. "Improving Environmental Sustainability by Characterizing Spatial and Temporal Concentrations of Ozone," Sustainability, MDPI, vol. 10(12), pages 1-11, December.
    7. Temiyasathit, Chivalai & Kim, Seoung Bum & Park, Sun-Kyoung, 2009. "Spatial prediction of ozone concentration profiles," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3892-3906, September.
    8. Sujit K. Sahu & Alan E. Gelfand & David M. Holland, 2010. "Fusing point and areal level space–time data with application to wet deposition," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 77-103, January.
    9. Andrew Hoegh & Scotland Leman, 2015. "A spatio-temporal model for assessing winter damage risk to east coast vineyards," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(4), pages 834-845, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:srg2t. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.