IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/qfcms.html
   My bibliography  Save this paper

Discovering Hidden Patterns in Loan Reimbursement

Author

Listed:
  • Niknamian, Sorush

Abstract

Loans are the major resources at banks. However, in some cases the cost that they incur to banks soar and finally makes them detrimental, as a result of irregular or delaying reimbursement or not paying at all. Due to the low wage rates in Iranian banks and the Central Bank of Iran (CBI) regulations in determining interest rates for deposits and loans, banks are becoming more and more dependent to the loans and their related profits. Therefore, banks have to look for customers with low risk for punctual payment. According to defect loan reimbursement in past years, banks have to specify severe prerequisites and limited contracts in granting loans to their customers. Contravening banking regulations and lack of consistent customers' accreditation banks are getting into heavy losses. Evaluating situations of the granted loans in EN Bank of Iran during a six-month period, based upon the profiles and loans history and the trend of payments useful patterns are discovered; designing a practical model of loan payment in Iran, the future default or failure to regain the granted loans is predicted and sensible methods of granting loans in Iran are developed. In order to extract hidden patterns in data statistical methods and data mining tools with focus on decision tree techniques are applied.

Suggested Citation

  • Niknamian, Sorush, 2019. "Discovering Hidden Patterns in Loan Reimbursement," OSF Preprints qfcms, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:qfcms
    DOI: 10.31219/osf.io/qfcms
    as

    Download full text from publisher

    File URL: https://osf.io/download/5cc67a3900a81000175b2ad2/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/qfcms?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:qfcms. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.