IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/q2yw5.html
   My bibliography  Save this paper

Aktuelle Entwicklung der kumulativen Inzidenz bestätigter SARS-CoV-2-Infektionen und infektionsbedingter Todesfälle in Deutschland [Modeling the cumulative incidence of SARS-CoV-2 cases and deaths in Germany]

Author

Listed:
  • Kriston, Levente

Abstract

ZUSAMMENFASSUNG Hintergrund: Die Beschreibung der aktuellen Ausbreitung der Coronavirus-Krankheit-2019 (COVID-19) in Deutschland kann dazu beitragen, die Entwicklung der Epidemie zu verstehen und ihre Folgen besser bewältigen zu können. Ziele der Arbeit: Die Ziele der vorliegende Studie waren, die Vorhersagevalidität eines existierenden Modells zur Entwicklung der kumulativen COVID-19-Fallzahlen in Deutschland zu überprüfen und mithilfe des Modells die Entwicklung der kumulativen Inzidenz von COVID-19-Infektionen und Todesfällen in den deutschen Bundesländern und im gesamten Bundesgebiet zu beschreiben und vorherzusagen. Material und Methoden: Es wurden Daten der Johns-Hopkins-Universität für die Überprüfung der Vorhersagevalidität und Daten des Robert Koch-Instituts für die Modellierung in Deutschland genutzt. Ein hierarchisch-logistisches Modell wurde verwendet, um die Entwicklung der beobachteten Daten zu modellieren. Ergebnisse: Das Modell zeigte eine hohe 1-Monats-Vorhersagevalidität und eignete sich zur Schätzung der bis Ende April 2020 beobachteten kumulativen Inzidenz von Infektionen und Todesfällen. Es zeigten sich große Unterschiede zwischen den Bundesländern bezüglich der geschätzten maximalen Inzidenz von Infektionen und Todesfällen am Ende der aktuellen Infektionswelle. Der Wendepunkt zwischen der Beschleunigungs- und Verlangsamungsphase der Ausbreitung wurde in den meisten Bundesländern einheitlich auf Anfang April 2020 geschätzt. Diskussion: Laut den Befunden verlangsamt sich gegenwärtig die Ausbreitung der COVID-19-Epidemie in Deutschland (Stand Anfang Mai 2020). Unter Beachtung seiner Limitationen kann der vorgestellte Ansatz zur Modellierung der kumulativen Inzidenz von COVID-19-Infektionen und Todesfällen verwendet werden. ENGLISH SUMMARY Background: Modeling the spreading of the Coronavirus Disease 2019 (COVID-19) in Germany may improve understanding of the epidemic and coping with its consequences. Objectives: The aims of the study were to investigate the prognostic validity of an existing model of the development of the cumulative number of infected cases in Germany and to use this model to describe and predict the development of the cumulative incidence of COVID-19 infections and deaths in German federals states and in the entire country. Materials and methods: Data form the Johns Hopkins University were used to examine prognostic validity and data from the Robert Koch Institute were used for modeling. A hierarchical logistic approach was utilized to model observed data. Results: The model showed strong prognostic validity and estimated the cumulative incidence of infections and deaths until the end of April 2020 accurately. Large differences between federal states were observed regarding the expected maximum incidence of infections and deaths at the end of the current epidemic wave. The inflection point between the accelerating and the decelerating phases of the epidemic was estimated to have fallen uniformly on the beginning of April 2020 in most federal states. Conclusions: As of the beginning of May 2020, the findings suggest that the COVID-19 epidemic is decelerating in Germany. As long as its limitations are taken into account, the presented approach can be used for modeling the development of the cumulative incidence of COVID-19 infections and deaths.

Suggested Citation

  • Kriston, Levente, 2020. "Aktuelle Entwicklung der kumulativen Inzidenz bestätigter SARS-CoV-2-Infektionen und infektionsbedingter Todesfälle in Deutschland [Modeling the cumulative incidence of SARS-CoV-2 cases and deaths in ," OSF Preprints q2yw5, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:q2yw5
    DOI: 10.31219/osf.io/q2yw5
    as

    Download full text from publisher

    File URL: https://osf.io/download/5eb16ebb62d4ab01476c5170/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/q2yw5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:q2yw5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.