IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/pk7w3.html
   My bibliography  Save this paper

Advanced Financial Modeling for Stock Price Prediction: A Quantitative Methods

Author

Listed:
  • Sario, Azhar ul Haque

Abstract

This third volume in the “Stock Predictions” series builds on the success of the first edition, “Stock Price Predictions: An Introduction to Probabilistic Models” (ISBN 979-8223912712), and the second edition, “Forecasting Stock Prices: Mathematics of Probabilistic Models” (ISBN 979-8223038993). This new edition delves deeper into the complex world of quantitative finance, providing readers with a comprehensive guide to advanced financial models used in stock price prediction. The book covers a wide array of models, beginning with the foundational concept of Brownian Motion, which represents the random movement of stock prices and underpins many financial models. It then progresses to Geometric Brownian Motion, a model that accounts for the exponential growth often observed in stock prices. Mean Reversion Models are introduced to capture the tendency of stock prices to revert to their long-term average, offering a counterpoint to trend-following strategies. The book explores the world of volatility modeling with GARCH models, which capture the clustering and persistence of volatility in financial markets, crucial for risk management and option pricing. Extensions of GARCH, such as EGARCH and TGARCH, are examined to address the asymmetric impact of positive and negative news on volatility. In the latter part of the book, the focus shifts to Machine Learning, demonstrating how techniques like Support Vector Machines and Neural Networks can uncover complex patterns in financial data and enhance prediction accuracy. Recurrent Neural Networks, particularly LSTMs, are highlighted for their ability to model sequential data, making them ideal for capturing the temporal dynamics of stock prices. Monte Carlo simulations are discussed as a powerful tool for generating a range of possible future outcomes, enabling investors to assess risk and make informed decisions. Finally, Copula Models are introduced to model the dependence structure between multiple assets, critical for portfolio management and risk assessment. Throughout the book, each model is presented with a clear explanation of its mathematical formulation, parameter estimation techniques, and practical applications in stock price prediction. The book emphasizes the strengths and limitations of each model, equipping readers with the knowledge to select the most appropriate model for their specific needs. This book is an invaluable resource for students, researchers, and practitioners in finance and investments seeking to master the quantitative tools used in stock price prediction. With its rigorous yet accessible approach, this book empowers readers to leverage advanced financial models and make informed investment decisions in today’s dynamic markets. The book is based on 95 research studies, which are listed on the references page and uploaded on Harvard University’s Dataverse for transparency. As a published book, it has undergone review for originality.

Suggested Citation

  • Sario, Azhar ul Haque, 2024. "Advanced Financial Modeling for Stock Price Prediction: A Quantitative Methods," OSF Preprints pk7w3, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:pk7w3
    DOI: 10.31219/osf.io/pk7w3
    as

    Download full text from publisher

    File URL: https://osf.io/download/66e46b9006e812674bec9fc2/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/pk7w3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Justin Sirignano & Rama Cont, 2019. "Universal features of price formation in financial markets: perspectives from deep learning," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1449-1459, September.
    3. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    4. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    2. Alpha Basweti Kenyatta & Antony Ngunyi & Anthony Gichuhi Waititu, 2020. "News Classification using Support Vector Machine to Model and Forecast Volatility," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 9(1), pages 1-1.
    3. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    4. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    5. Bradley T. Ewing & Jamie B. Kruse & Mark A. Thompson, 2005. "Comparing the Impact of News: A Tale of Three Health Care Sectors," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 32(7‐8), pages 1587-1611, September.
    6. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    7. Carl H. Korkpoe & Peterson Owusu Junior, 2018. "Behaviour of Johannesburg Stock Exchange All Share Index Returns - An Asymmetric GARCH and News Impact Effects Approach," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 68(1), pages 26-42, January-M.
    8. Georgios Bampinas & Konstantinos Ladopoulos & Theodore Panagiotidis, 2018. "A note on the estimated GARCH coefficients from the S&P1500 universe," Applied Economics, Taylor & Francis Journals, vol. 50(34-35), pages 3647-3653, July.
    9. Faisal Khan & Saif-Ur-Rehman Khan & Hashim Khan, 2016. "Pricing of Risk, Various Volatility Dynamics and Macroeconomic Exposure of Firm Returns: New Evidence on Age Effect," International Journal of Economics and Financial Issues, Econjournals, vol. 6(2), pages 551-561.
    10. Hisham Al Refai & Gazi Mainul Hassan, 2018. "The Impact of Market-wide Volatility on Time-varying Risk: Evidence from Qatar Stock Exchange," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(2_suppl), pages 239-258, August.
    11. El Jebari, Ouael & Hakmaoui, Abdelati, 2018. "GARCH Family Models vs EWMA: Which is the Best Model to Forecast Volatility of the Moroccan Stock Exchange Market? || Modelos de la familia GARCH vs EWMA: ¿cuál es el mejor modelo para pronosticar la ," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 237-249, Diciembre.
    12. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Adam E Clements & Ayesha Scott & Annastiina Silvennoinen, 2012. "Forecasting multivariate volatility in larger dimensions: some practical issues," NCER Working Paper Series 80, National Centre for Econometric Research.
    14. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    15. Perry Sadorsky & Michael D. McKenzie, 2008. "Power transformation models and volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 587-606.
    16. Keith Pilbeam & Kjell Langeland, 2015. "Forecasting exchange rate volatility: GARCH models versus implied volatility forecasts," International Economics and Economic Policy, Springer, vol. 12(1), pages 127-142, March.
    17. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    18. Mapa, Dennis S., 2003. "A Range-Based GARCH Model for Forecasting Volatility," MPRA Paper 21323, University Library of Munich, Germany.
    19. Mapa, Dennis S., 2004. "A Forecast Comparison of Financial Volatility Models: GARCH (1,1) is not Enough," MPRA Paper 21028, University Library of Munich, Germany.
    20. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:pk7w3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.