IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/kmg3r.html
   My bibliography  Save this paper

A Maximum Likelihood Mixture Approach for Multivariate Hypothesis Testing in case of Incomplete Data

Author

Listed:
  • Nguyen, Loc PhD, MD, MBA

Abstract

Multivariate hypothesis testing becomes more and more necessary when data is in the process of changing from scalar and univariate format to multivariate format, especially financial and biological data is often constituted of n-dimension vectors. Likelihood ratio test is the best method that applies the test on mean of multivariate sample with known or unknown covariance matrix but it is impossible to use likelihood ratio test in case of incomplete data when the data incompletion gets popular because of many reasons in reality. Therefore, this research proposes a new approach that gives an ability to apply likelihood ratio test into incomplete data. Instead of replacing missing values in incomplete sample by estimated values, this approach classifies incomplete sample into groups and each group is represented by a potential or partial distribution. All partial distributions are unified into a mixture model which is optimized via expectation maximization (EM) algorithm. Finally, likelihood ratio test is performed on mixture model instead of incomplete sample. This research provides a thorough description of proposed approach and mathematical proof that is necessary to such approach. The comparison of mixture model approach and filling missing values approach is also discussed in this research.

Suggested Citation

  • Nguyen, Loc PhD, MD, MBA, 2018. "A Maximum Likelihood Mixture Approach for Multivariate Hypothesis Testing in case of Incomplete Data," OSF Preprints kmg3r, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:kmg3r
    DOI: 10.31219/osf.io/kmg3r
    as

    Download full text from publisher

    File URL: https://osf.io/download/5a5f9f13e1dab9000cec0164/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/kmg3r?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:kmg3r. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.