IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/jzv3e_v1.html
   My bibliography  Save this paper

A novel in silico Monte Carlo approach to optimize a PSD estimation problem. Generation of data fusion experiment rules

Author

Listed:
  • Otero, Fernando

Abstract

This article analyzes the performance of combining information from Scanning Electron Microscopy (SEM) micrographs with Static Light Scattering (SLS) measurements for retrieving the so-called Particle Size Distribution (PSD) in terms of experimental features. The corresponding data fusion is implemented using a novel Monte Carlo-based method consisting in a SMF (Sampling-Mapping-Filtering) approach. This approach provides an important reference to assess the strategy of the experiment for this specific problem by means of solving an inverse problem. Furthermore, low levels of volume fraction and a PSD represented by log-normal distributions are considered in order to reduce processing and model errors due to ill-posedness. The prior statistics corresponding to the SEM micrographs have been achieved by means of the Jackknife procedure used as a resampling technique. The likelihood term considers iid normal measurements generated from the Local Monodisperse Approximation (LMA) and also makes use of the same model as forward linear model, in an inversion case known as inverse crime. However, it has been proved that the LMA performs well in practice for low fraction volume systems as considered here. The PSD retrieval is measured in terms of improvement in precision with respect to one of the log-normal parameters in SEM micrographs, i.e., the desirability. Estimates are expressed as a function of a typical system parameter such as polydispersity, as well as experimental variables, i.e., number of particles per micrograph (PPM) and noise level ε in the SLS measurements. These estimations are then analyzed by means of the Box-Behnken (BB) design and the response surface methodology (RSM) in order to generate a surrogate model from which rules for the optimization of the experiment are made when desirability is maximized. Finally, a Rule-Based System (RBS) is proposed for future use.

Suggested Citation

  • Otero, Fernando, 2021. "A novel in silico Monte Carlo approach to optimize a PSD estimation problem. Generation of data fusion experiment rules," OSF Preprints jzv3e_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:jzv3e_v1
    DOI: 10.31219/osf.io/jzv3e_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/60e496b5ef8b3f044cbd9f9a/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/jzv3e_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:jzv3e_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.