IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/j5g8e_v1.html
   My bibliography  Save this paper

Magnitudes of Households’ Carbon Footprint in Iskandar Malaysia: A Policy Implications for Sustainable Development

Author

Listed:
  • Zen, Irina Safitri
  • Al-Amin, Abul Quasem
  • Alam, Md. Mahmudul

    (Universiti Utara Malaysia)

  • Doberstein, Brent

Abstract

The carbon footprint of households is a significant contribution to global greenhouse gas emissions, accounting for 24% of total emissions. As a result, it is critical to quantify a household's carbon footprint in order to reduce it over time. One of the best ways to measure carbon emitted from various sectors of the economy, including household daily activities, is to calculate a country's carbon footprint (CF). This study statistically examined the magnitude of households’ carbon footprints and their relationships with household daily activities and certain socio-economic demographic variables in Malaysia. Results revealed that the average household carbon footprint amounted to 11.76 t-CO2. The average also showed that the primary carbon footprint, 7.02 t-CO2 or 59.69% was higher compared to the secondary carbon footprint which was 4.73 t- CO2 or 40.22% and assessment revealed significant differences among household types. The largest carbon footprint was evident in a medium-high cost urban area, estimated at 20.14 t-CO2, while the carbon footprint found in a rural area was 9.58 t-CO2. In the latter, the primary carbon footprint was almost double the figure of 5.84 t-CO2 (61%) than the secondary carbon footprint of 3.73 t-CO2 (39%). The study reveals a higher carbon footprint in urban areas compared to rural ones depicting the effects of urbanisation and urban sprawl on household lifestyles and carbon footprints. Despite some limitations, the findings of this study will help policymakers design and implement stronger policies that enforce low-carbon activities and energy-saving goods and services in order to reduce urban Malaysia's carbon footprint dramatically.

Suggested Citation

  • Zen, Irina Safitri & Al-Amin, Abul Quasem & Alam, Md. Mahmudul & Doberstein, Brent, 2021. "Magnitudes of Households’ Carbon Footprint in Iskandar Malaysia: A Policy Implications for Sustainable Development," OSF Preprints j5g8e_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:j5g8e_v1
    DOI: 10.31219/osf.io/j5g8e_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/61f15d7ff768440656105771/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/j5g8e_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ahmad Farabi & Azrai Abdullah & Rahmat Heru Setianto, 2019. "Energy Consumption, Carbon Emissions and Economic Growth in Indonesia and Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 338-345.
    2. James D Ward & Paul C Sutton & Adrian D Werner & Robert Costanza & Steve H Mohr & Craig T Simmons, 2016. "Is Decoupling GDP Growth from Environmental Impact Possible?," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-14, October.
    3. Tan, Sieting & Yang, Jin & Yan, Jinyue & Lee, Chewtin & Hashim, Haslenda & Chen, Bin, 2017. "A holistic low carbon city indicator framework for sustainable development," Applied Energy, Elsevier, vol. 185(P2), pages 1919-1930.
    4. Bin, Shui & Dowlatabadi, Hadi, 2005. "Consumer lifestyle approach to US energy use and the related CO2 emissions," Energy Policy, Elsevier, vol. 33(2), pages 197-208, January.
    5. Isaksen, Elisabeth T. & Narbel, Patrick A., 2017. "A carbon footprint proportional to expenditure - A case for Norway?," Ecological Economics, Elsevier, vol. 131(C), pages 152-165.
    6. Weber, Christopher L. & Matthews, H. Scott, 2008. "Quantifying the global and distributional aspects of American household carbon footprint," Ecological Economics, Elsevier, vol. 66(2-3), pages 379-391, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zen, Irina Safitri & Al-Amin, Abul Quasem & Alam, Md. Mahmudul & Doberstein, Brent, 2021. "Magnitudes of Households’ Carbon Footprint in Iskandar Malaysia: A Policy Implications for Sustainable Development," OSF Preprints j5g8e, Center for Open Science.
    2. Rui Huang & Shaohui Zhang & Changxin Liu, 2018. "Comparing Urban and Rural Household CO 2 Emissions—Case from China’s Four Megacities: Beijing, Tianjin, Shanghai, and Chongqing," Energies, MDPI, vol. 11(5), pages 1-17, May.
    3. Xinkuo Xu & Liyan Han, 2017. "Diverse Effects of Consumer Credit on Household Carbon Emissions at Quantiles: Evidence from Urban China," Sustainability, MDPI, vol. 9(9), pages 1-25, September.
    4. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    5. Pottier, Antonin & Combet, Emmanuel & Cayla, Jean-Michel & de Lauretis, Simona & Nadaud, Franck, 2021. "Who emits CO2 ? Landscape of ecological inequalities in France from a critical perspective," FEEM Working Papers 311053, Fondazione Eni Enrico Mattei (FEEM).
    6. Qu, Jiansheng & Zeng, Jingjing & Li, Yan & Wang, Qin & Maraseni, Tek & Zhang, Lihua & Zhang, Zhiqiang & Clarke-Sather, Abigail, 2013. "Household carbon dioxide emissions from peasants and herdsmen in northwestern arid-alpine regions, China," Energy Policy, Elsevier, vol. 57(C), pages 133-140.
    7. Yueyue Rong & Junsong Jia & Min Ju & Chundi Chen & Yangming Zhou & Yexi Zhong, 2021. "Multi-Perspective Analysis of Household Carbon Dioxide Emissions from Direct Energy Consumption by the Methods of Logarithmic Mean Divisia Index and ? Convergence in Central China," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    8. Golley, Jane & Meng, Xin, 2012. "Income inequality and carbon dioxide emissions: The case of Chinese urban households," Energy Economics, Elsevier, vol. 34(6), pages 1864-1872.
    9. Moises Neil V. Seriño & Stephan Klasen, 2015. "Estimation and Determinants of the Philippines' Household Carbon Footprint," The Developing Economies, Institute of Developing Economies, vol. 53(1), pages 44-62, March.
    10. Lina Liu & Jiansheng Qu & Tek Narayan Maraseni & Yibo Niu & Jingjing Zeng & Lihua Zhang & Li Xu, 2020. "Household CO 2 Emissions: Current Status and Future Perspectives," IJERPH, MDPI, vol. 17(19), pages 1-19, September.
    11. Ethan Sharygin, 2013. "The Carbon Cost of an Educated Future: A Consumer Lifestyle Approach," VID Working Papers 1304, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna.
    12. Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
    13. Jiansheng Qu & Tek Maraseni & Lina Liu & Zhiqiang Zhang & Talal Yusaf, 2015. "A Comparison of Household Carbon Emission Patterns of Urban and Rural China over the 17 Year Period (1995–2011)," Energies, MDPI, vol. 8(9), pages 1-21, September.
    14. Kerkhof, Annemarie C. & Benders, Ren M.J. & Moll, Henri C., 2009. "Determinants of variation in household CO2 emissions between and within countries," Energy Policy, Elsevier, vol. 37(4), pages 1509-1517, April.
    15. Panzone, Luca A. & Lemke, Fred & Petersen, Henry L., 2016. "Biases in consumers' assessment of environmental damage in food chains and how investments in reputation can help," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 327-337.
    16. Xibao Xu & Yan Tan & Shuang Chen & Guishan Yang & Weizhong Su, 2015. "Urban Household Carbon Emission and Contributing Factors in the Yangtze River Delta, China," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-21, April.
    17. Andreas Froemelt & René Buffat & Stefanie Hellweg, 2020. "Machine learning based modeling of households: A regionalized bottom‐up approach to investigate consumption‐induced environmental impacts," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 639-652, June.
    18. Pedro J. Zarco-Periñán & Fco Javier Zarco-Soto & Irene M. Zarco-Soto & José L. Martínez-Ramos & Rafael Sánchez-Durán, 2022. "CO 2 Emissions in Buildings: A Synopsis of Current Studies," Energies, MDPI, vol. 15(18), pages 1-10, September.
    19. Sanna Ala-Mantila & Jukka Heinonen & Seppo Junnila, 2013. "Greenhouse Gas Implications of Urban Sprawl in the Helsinki Metropolitan Area," Sustainability, MDPI, vol. 5(10), pages 1-18, October.
    20. Lévay, Petra Zsuzsa & Vanhille, Josefine & Goedemé, Tim & Verbist, Gerlinde, 2021. "The association between the carbon footprint and the socio-economic characteristics of Belgian households," Ecological Economics, Elsevier, vol. 186(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:j5g8e_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.