IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/j42n6.html
   My bibliography  Save this paper

Divergence Functions in Dually Flat Spaces and Their Properties

Author

Listed:
  • Nishiyama, Tomohiro

Abstract

In the field of statistics, many kind of divergence functions have been studied as an amount which measures the discrepancy between two probability distributions. In the differential geometrical approach in statistics (information geometry), dually flat spaces play a key role. In a dually flat space, there exist dual affine coordinate systems and strictly convex functions called potential and a canonical divergence is naturally introduced as a function of the affine coordinates and potentials. The canonical divergence satisfies a relational expression called triangular relation. This can be regarded as a generalization of the law of cosines in Euclidean space. In this paper, we newly introduce two kinds of divergences. The first divergence is a function of affine coordinates and it is consistent with the Jeffreys divergence for exponential or mixture families. For this divergence, we show that more relational equations and theorems similar to Euclidean space hold in addition to the law of cosines. The second divergences are functions of potentials and they are consistent with the Bhattacharyya distance for exponential families and are consistent with the Jensen-Shannon divergence for mixture families respectively. We derive an inequality between the the first and the second divergences and show that the inequality is a generalization of Lin's inequality.

Suggested Citation

  • Nishiyama, Tomohiro, 2018. "Divergence Functions in Dually Flat Spaces and Their Properties," OSF Preprints j42n6, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:j42n6
    DOI: 10.31219/osf.io/j42n6
    as

    Download full text from publisher

    File URL: https://osf.io/download/5b59c7df50411a00148429b9/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/j42n6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nishiyama, Tomohiro, 2018. "Generalized Bregman and Jensen divergences which include some f-divergences," OSF Preprints ybmdx, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:j42n6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.