IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/hyqsb.html
   My bibliography  Save this paper

A Comparative Study On Forecasting Consumer Price Index Of India Amongst XGBoost, Theta, ARIMA, Prophet And LSTM Algorithms

Author

Listed:
  • Asati, Akshita

Abstract

CPI often referred to as the Consumer Price Index is a crucial and thorough method employed to estimate price changes over a fixed time interval within a country which is representative of consumption expenditure in a country‘s economy. CPI being an economic indicator engenders therefore the popular metric called inflation of the country. Thus, if we can accurately forecast the CPI, the country‘s economy can be controlled well in time and appropriate decision-making can be enabled. Hence, for a decade CPI index forecasting, especially in a developing country like India, has been always a matter of interest and research topic for economists and policy of the government. To forecast CPI, humans (decision makers) required vast domain knowledge and experience. Moreover, traditional CPI forecasting involved a multitude of human interventions and discussions for the same. However, with the recent advancements in the domain of time series forecasting techniques encompassing dependable modern machine learning, statistical as well as deep learning models there exists a potential scope in leveraging modern technology to forecast CPI of India which can technically aid towards this important decision-making step in a diverse country like India. In this paper, a comparative study is carried out exploring MAD, RMSE, and MAPE as comparison criteria amongst Machine Learning (XGBoost), Statistical Learning (Theta, ARIMA, Prophet) and Deep Learning (LSTM) algorithms. Furthermore, from this comparative univariate time series forecasting study, it can be demonstrated that technological solutions in the domain of forecasting show promising results with reasonable forecast accuracy.

Suggested Citation

  • Asati, Akshita, 2022. "A Comparative Study On Forecasting Consumer Price Index Of India Amongst XGBoost, Theta, ARIMA, Prophet And LSTM Algorithms," OSF Preprints hyqsb, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:hyqsb
    DOI: 10.31219/osf.io/hyqsb
    as

    Download full text from publisher

    File URL: https://osf.io/download/63a2af59c71a71015a1521f4/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/hyqsb?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:hyqsb. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.