IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/fqh83_v1.html
   My bibliography  Save this paper

Potentiels des grands modèles de langage pré-entraînés pour améliorer l'efficacité de l'éducation

Author

Listed:
  • Kim, Donghyun

Abstract

L'application de modèles de langage pré-entraînés (PLM) dans le traitement du langage naturel (TAL) a été largement reconnue pour ses performances exceptionnelles dans diverses tâches de TAL et dans des benchmarks publics. L'intégration des PLM dans l'éducation a la possibilité de transformer la façon dont l'apprentissage et l'enseignement sont menés. Cependant, il est crucial de peser à la fois les avantages et les inconvénients qui peuvent accompagner une telle intégration. Pour tirer pleinement parti des PLM et minimiser les impacts négatifs, une approche prudente et responsable est nécessaire lors de l'intégration des PLM dans l'éducation. Ce document se penche sur les avantages et les inconvénients de l'utilisation des PLM dans l'éducation et offre des conseils pour les progrès futurs.

Suggested Citation

  • Kim, Donghyun, 2023. "Potentiels des grands modèles de langage pré-entraînés pour améliorer l'efficacité de l'éducation," OSF Preprints fqh83_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:fqh83_v1
    DOI: 10.31219/osf.io/fqh83_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/63e311a9197ebb022ca16544/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/fqh83_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:fqh83_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.