Author
Listed:
- Zhang, Xiang
- Stamey, James
- Mathur, Maya B
Abstract
Purpose: We review statistical methods for assessing the possible impact of bias due to unmeasured confounding in real world data analysis and provide detailed recommendations for choosing among the methods. Methods: By updating an earlier systematic review, we summarize modern statistical best practices for evaluating and correcting for potential bias due to unmeasured confounding in estimating causal treatment effect from non-interventional studies. Results: We suggest a hierarchical structure for assessing unmeasured confounding. First, for initial sensitivity analyses, we strongly recommend applying a recently developed method, the E-value, that is straightforward to apply and does not require prior knowledge or assumptions about the unmeasured confounder(s). When some such knowledge is available, the E-value could be supplemented by the rule-out or array method at this step. If these initial analyses suggest results may not be robust to unmeasured confounding, subsequent analyses could be conducted using more specialized statistical methods, which we categorize based on whether they require access to external data on the suspected unmeasured confounder(s), internal data, or no data. Other factors for choosing the subsequent sensitivity analysis methods are also introduced and discussed, including the types of unmeasured confounders and whether the subsequent sensitivity analysis is intended to provide a corrected causal treatment effect. Conclusion: Various analytical methods have been proposed to address unmeasured confounding, but little research has discussed a structured approach to select appropriate methods in practice. In providing practical suggestions for choosing appropriate initial and, potentially, more specialized subsequent sensitivity analyses, we hope to facilitate the widespread reporting of such sensitivity analyses in non-interventional studies. The suggested approach also has the potential to inform pre-specification of sensitivity analyses before executing the analysis, and therefore increase the transparency and limit selective study reporting.
Suggested Citation
Zhang, Xiang & Stamey, James & Mathur, Maya B, 2019.
"Assessing the impact of unmeasured confounders for credible and reliable real-world evidence,"
OSF Preprints
fe4gs, Center for Open Science.
Handle:
RePEc:osf:osfxxx:fe4gs
DOI: 10.31219/osf.io/fe4gs
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:fe4gs. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.