IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/bs6wy.html
   My bibliography  Save this paper

K-Means Clustering algorithms in Urban studies: A Review of Unsupervised Machine Learning techniques

Author

Listed:
  • kilani, bochra hadj

Abstract

In years there has been an increase, in the interest surrounding the utilization of unsupervised machine learning methods, particularly the application of K means clustering algorithms within urban studies. These techniques have demonstrated their usefulness, in examining and comprehending facets of planning including land usage patterns, transportation systems and population distribution. The objective of this article is to offer an overview of how K means clustering algorithm are employed in urban studies. The review examines the different methodologies and approaches employed in utilizing K-means clustering for urban analysis, highlighting its advantages and limitations. Additionally, the article discusses the specific challenges and considerations that arise when applying K-means clustering in urban studies, including data preprocessing, feature selection, and interpretation of the cluster results. The findings of this review demonstrate the wide range of applications of K-means clustering in urban studies, from identifying distinct land use categories to understanding the spatial distribution of social amenities. Furthermore, it is revealed that the use of K-means clustering in urban studies allows for the identification and characterization of hidden patterns and similarities among urban areas that might not be immediately apparent through traditional analysis methods. Overall, the use of K-means clustering algorithms provides a valuable tool for urban planners and researchers in gaining insights and making informed decisions in urban design.

Suggested Citation

  • kilani, bochra hadj, 2023. "K-Means Clustering algorithms in Urban studies: A Review of Unsupervised Machine Learning techniques," OSF Preprints bs6wy, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:bs6wy
    DOI: 10.31219/osf.io/bs6wy
    as

    Download full text from publisher

    File URL: https://osf.io/download/656a78c2a0121a0931317c35/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/bs6wy?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:bs6wy. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.