IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/ahkd3.html
   My bibliography  Save this paper

Unleashing the Potential of Large Language Models in the Finance Industry

Author

Listed:
  • Lee, Heungmin

Abstract

The rapid advancements in large language models (LLMs) have ushered in a new era of transformative potential for the finance industry. This paper explores the latest developments in the application of LLMs across key areas of the finance domain, highlighting their significant impact and future implications. In the realm of financial analysis and modelling, LLMs have demonstrated the ability to outperform traditional models in tasks such as stock price prediction, portfolio optimization, and risk assessment. By processing vast amounts of financial data and leveraging their natural language understanding capabilities, these models can generate insightful analyses, identify patterns, and provide data-driven recommendations to support decision-making processes. The conversational capabilities of LLMs have also revolutionized the customer service landscape in finance. LLMs can engage in natural language dialogues, addressing customer inquiries, providing personalized financial advice, and even handling complex tasks like loan applications and investment planning. This integration of LLMs into financial institutions has the potential to enhance customer experiences, improve response times, and reduce the workload of human customer service representatives. Furthermore, LLMs are making significant strides in the realm of risk management and compliance. These models can analyze complex legal and regulatory documents, identify potential risks, and suggest appropriate remedial actions. By automating routine compliance tasks, such as anti-money laundering (AML) checks and fraud detection, LLMs can help financial institutions enhance their risk management practices and ensure better compliance, mitigating the risk of costly penalties or reputational damage. As the finance industry continues to embrace the transformative potential of LLMs, it will be crucial to address the challenges surrounding data privacy, algorithmic bias, and the responsible development of these technologies. By navigating these considerations, the finance sector can harness the full capabilities of LLMs to drive innovation, improve efficiency, and ultimately, enhance the overall financial ecosystem.

Suggested Citation

  • Lee, Heungmin, 2025. "Unleashing the Potential of Large Language Models in the Finance Industry," OSF Preprints ahkd3, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:ahkd3
    DOI: 10.31219/osf.io/ahkd3
    as

    Download full text from publisher

    File URL: https://osf.io/download/676d83d665ea356972962ee0/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/ahkd3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:ahkd3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.