Author
Listed:
- Weber, Frank
- Knapp, Guido
- Glass, Anne
- Kundt, Günther
- Ickstadt, Katja
Abstract
There exists a variety of interval estimators for the overall treatment effect in a random-effects meta-analysis. A recent literature review summarizing existing methods suggested that in most situations, the Hartung-Knapp/Sidik-Jonkman (HKSJ) method was preferable. However, a quantitative comparison of those methods in a common simulation study is still lacking. Thus, we conduct such a simulation study for continuous and binary outcomes, focusing on the medical field for application. Based on the literature review and some new theoretical considerations, a practicable number of interval estimators is selected for this comparison: the classical normal-approximation interval using the DerSimonian-Laird heterogeneity estimator, the HKSJ interval using either the Paule-Mandel or the Sidik-Jonkman heterogeneity estimator, the Skovgaard higher-order profile likelihood interval, a parametric bootstrap interval, and a Bayesian interval using different priors. We evaluate the performance measures (coverage and interval length) at specific points in the parameter space, i.e. not averaging over a prior distribution. In this sense, our study is conducted from a frequentist point of view. We confirm the main finding of the literature review, the general recommendation of the HKSJ method (here with the Sidik-Jonkman heterogeneity estimator). For meta-analyses including only 2 studies, the high length of the HKSJ interval limits its practical usage. In this case, the Bayesian interval using a weakly informative prior for the heterogeneity may help. Our recommendations are illustrated using a real-world meta-analysis dealing with the efficacy of an intramyocardial bone marrow stem cell transplantation during coronary artery bypass grafting.
Suggested Citation
Weber, Frank & Knapp, Guido & Glass, Anne & Kundt, Günther & Ickstadt, Katja, 2020.
"Interval estimation of the overall treatment effect in random-effects meta-analyses: Recommendations from a simulation study comparing frequentist, Bayesian, and bootstrap methods,"
OSF Preprints
5zbh6_v1, Center for Open Science.
Handle:
RePEc:osf:osfxxx:5zbh6_v1
DOI: 10.31219/osf.io/5zbh6_v1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:5zbh6_v1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.