IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/5zbh6_v1.html
   My bibliography  Save this paper

Interval estimation of the overall treatment effect in random-effects meta-analyses: Recommendations from a simulation study comparing frequentist, Bayesian, and bootstrap methods

Author

Listed:
  • Weber, Frank
  • Knapp, Guido
  • Glass, Anne
  • Kundt, Günther
  • Ickstadt, Katja

Abstract

There exists a variety of interval estimators for the overall treatment effect in a random-effects meta-analysis. A recent literature review summarizing existing methods suggested that in most situations, the Hartung-Knapp/Sidik-Jonkman (HKSJ) method was preferable. However, a quantitative comparison of those methods in a common simulation study is still lacking. Thus, we conduct such a simulation study for continuous and binary outcomes, focusing on the medical field for application. Based on the literature review and some new theoretical considerations, a practicable number of interval estimators is selected for this comparison: the classical normal-approximation interval using the DerSimonian-Laird heterogeneity estimator, the HKSJ interval using either the Paule-Mandel or the Sidik-Jonkman heterogeneity estimator, the Skovgaard higher-order profile likelihood interval, a parametric bootstrap interval, and a Bayesian interval using different priors. We evaluate the performance measures (coverage and interval length) at specific points in the parameter space, i.e. not averaging over a prior distribution. In this sense, our study is conducted from a frequentist point of view. We confirm the main finding of the literature review, the general recommendation of the HKSJ method (here with the Sidik-Jonkman heterogeneity estimator). For meta-analyses including only 2 studies, the high length of the HKSJ interval limits its practical usage. In this case, the Bayesian interval using a weakly informative prior for the heterogeneity may help. Our recommendations are illustrated using a real-world meta-analysis dealing with the efficacy of an intramyocardial bone marrow stem cell transplantation during coronary artery bypass grafting.

Suggested Citation

  • Weber, Frank & Knapp, Guido & Glass, Anne & Kundt, Günther & Ickstadt, Katja, 2020. "Interval estimation of the overall treatment effect in random-effects meta-analyses: Recommendations from a simulation study comparing frequentist, Bayesian, and bootstrap methods," OSF Preprints 5zbh6_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:5zbh6_v1
    DOI: 10.31219/osf.io/5zbh6_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/5e6f7a6b0cd06c038a003096/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/5zbh6_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hajo Holzmann & Sebastian Vollmer, 2008. "A likelihood ratio test for bimodality in two-component mixtures with application to regional income distribution in the EU," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 57-69, February.
    2. Friedrich, Thomas & Knapp, Guido, 2013. "Generalised interval estimation in the random effects meta regression model," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 165-179.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weber, Frank & Knapp, Guido & Glass, Anne & Kundt, Günther & Ickstadt, Katja, 2020. "Interval estimation of the overall treatment effect in random-effects meta-analyses: Recommendations from a simulation study comparing frequentist, Bayesian, and bootstrap methods," OSF Preprints 5zbh6, Center for Open Science.
    2. H. Zakerzadeh & A. Jafari, 2015. "Inference on the parameters of two Weibull distributions based on record values," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 25-40, March.
    3. Sebastian Vollmer & Hajo Holzmann & Florian Ketterer & Stephan Klasen, 2013. "Distribution dynamics of regional GDP per employee in unified Germany," Empirical Economics, Springer, vol. 44(2), pages 491-509, April.
    4. Marian Gidea & Daniel Goldsmith & Yuri Katz & Pablo Roldan & Yonah Shmalo, 2018. "Topological recognition of critical transitions in time series of cryptocurrencies," Papers 1809.00695, arXiv.org.
    5. Yu, Dalei & Ding, Chang & He, Na & Wang, Ruiwu & Zhou, Xiaohua & Shi, Lei, 2019. "Robust estimation and confidence interval in meta-regression models," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 93-118.
    6. Ray, Surajit & Ren, Dan, 2012. "On the upper bound of the number of modes of a multivariate normal mixture," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 41-52.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:5zbh6_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.