IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/29pvm_v1.html
   My bibliography  Save this paper

Towards Principled Unskewing: Viewing 2020 Election Polls Through a Corrective Lens from 2016

Author

Listed:
  • Isakov, Michael
  • Kuriwaki, Shiro

    (Harvard University)

Abstract

We apply the concept of the data defect index to study the potential impact of systematic errors on the 2020 pre-election polls in 12 presidential battleground states. We investigate the impact under the hypothetical scenarios that (1) the magnitude of the underlying nonresponse bias correlated with supporting Donald Trump is similar to that of the 2016 polls, (2) the pollsters’ ability to correct systematic errors via weighting has not improved significantly, and (3) turnout levels remain similar to 2016. Because survey weights are crucial for our investigations but are often not released, we adopt two approximate methods under different modeling assumptions. Under these scenarios, which may be far from reality, our models shift Trump’s estimated two-party voteshare by a percentage point in his favor in the median battleground state, and increases twofold the uncertainty around the voteshare estimate.

Suggested Citation

  • Isakov, Michael & Kuriwaki, Shiro, 2020. "Towards Principled Unskewing: Viewing 2020 Election Polls Through a Corrective Lens from 2016," OSF Preprints 29pvm_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:29pvm_v1
    DOI: 10.31219/osf.io/29pvm_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/605685fb90bb4e0181153c3e/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/29pvm_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:29pvm_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.