IDEAS home Printed from https://ideas.repec.org/p/osf/metaar/67sak_v1.html
   My bibliography  Save this paper

The "Tau" of Science - How to Measure, Study, and Integrate Quantitative and Qualitative Knowledge

Author

Listed:
  • Fanelli, Daniele

Abstract

Scientists' ability to integrate diverse forms of evidence and evaluate how well they can explain and predict phenomena, in other words, $\textit{to know how much they know}$, struggles to keep pace with technological innovation. Central to the challenge of extracting knowledge from data is the need to develop a metric of knowledge itself. A candidate metric of knowledge, $K$, was recently proposed by the author. This essay further advances and integrates that proposal, by developing a methodology to measure its key variable, symbolized with the Greek letter $\tau$ ("tau"). It will be shown how a $\tau$ can represent the description of any phenomenon, any theory to explain it, and any methodology to study it, allowing the knowledge about that phenomenon to be measured with $K$. To illustrate potential applications, the essay calculates $\tau$ and $K$ values of: logical syllogisms and proofs, mathematical calculations, empirical quantitative knowledge, statistical model selection problems, including how to correct for "forking paths" and "P-hacking" biases, randomised controlled experiments, reproducibility and replicability, qualitative analyses via process tracing, and mixed quantitative and qualitative evidence. Whilst preliminary in many respects, these results suggest that $K$ theory offers a meaningful understanding of knowledge, which makes testable metascientific predictions, and which may be used to analyse and integrate qualitative and quantitative evidence to tackle complex problems.

Suggested Citation

  • Fanelli, Daniele, 2022. "The "Tau" of Science - How to Measure, Study, and Integrate Quantitative and Qualitative Knowledge," MetaArXiv 67sak_v1, Center for Open Science.
  • Handle: RePEc:osf:metaar:67sak_v1
    DOI: 10.31219/osf.io/67sak_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/61d7ffe5da63201206fe6b5a/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/67sak_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:metaar:67sak_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/metaarxiv .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.