IDEAS home Printed from https://ideas.repec.org/p/osf/inarxi/t672g.html
   My bibliography  Save this paper

Pemodelan Angka Kematian Ibu Di Indonesia Dengan Pendekatan Geographically Weighted Poisson Regression

Author

Listed:
  • Destyanugraha, Rivan
  • Kurniawan, Robert

Abstract

Angka Kematian Ibu (AKI) merupakan salah satu indikator penting pembangunan kesehatan suatu negara danmenjadi salah satu target pencapaian Sustainable Development Goals (SDGs). Penelitian ini bertujuan menyusun model hubungan AKI dengan variabel-variabel pembangunan kesehatan provinsi menggunakan metode Geographically Weighted Poisson Regression (GWPR) dan memetakan model tersebut kedalam peta provinsi. Estimasi parameter model menggunakan data PODES tahun 2011 dan profil kesehatan dan proyeksi penduduk tahun 2010-2013. Model yang diperoleh terdiri dari empat variabel yang mempengaruhi jumlah kematian ibu yaitu rasio sarana kesehatan, rasio bidan, persentase persalinan ditolong tenaga kesehatan, dan persentase ibu hamil mendapat tablet Fe. Pemetaan empat variabel tersebut ke dalam peta provinsi menghasilkan tiga kelompok wilayah dengan tingkat signifikansi variabel yang berbeda-beda. Nilai AIC dan deviance model GWPR lebih rendah dari regresi Poisson menunjukkan bahwa model AKI dengan GWPR lebih baikdari regresi Poisson.

Suggested Citation

  • Destyanugraha, Rivan & Kurniawan, Robert, 2017. "Pemodelan Angka Kematian Ibu Di Indonesia Dengan Pendekatan Geographically Weighted Poisson Regression," INA-Rxiv t672g, Center for Open Science.
  • Handle: RePEc:osf:inarxi:t672g
    DOI: 10.31219/osf.io/t672g
    as

    Download full text from publisher

    File URL: https://osf.io/download/59cb5156594d900253eb0ca1/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/t672g?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:inarxi:t672g. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://ios.io/preprints/inarxiv/discover .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.